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Preface

In 1948 Hendrik Casimir published a paper showing that the existence of elec-
tromagnetic zero-point energy implies that there is an attractive force between two
uncharged, perfectly conducting, parallel plates. Evgeny Lifshitz in 1955 gen-
eralized this theory to the case of dielectric media and finite temperatures. Over the
next forty years experiments demonstrated the reality of Casimir forces, while a
relatively small number of theoretical papers extended the analyses of Casimir and
Lifshitz and explored other aspects of zero-point energies and fluctuations of
quantum fields. It was not until the 1990s, however, that these forces were mea-
sured unambiguously and found to be in good agreement with predicted values.
There followed a rapid growth of interest and research in Casimir physics.

Casimir effects serve as primary examples of directly observable manifestations
of the nontrivial properties of quantum fields, and as such are attracting increasing
interest from quantum field theorists, particle physicists, and cosmologists. Though
very weak except at short distances, Casimir forces are universal in the sense that
all material objects are subject to them. They are an increasingly important part of
the physics of atom-surface interactions, while in nanotechnology they are being
investigated not only as contributors to stiction but also as potential mechanisms
for the actuation of micro-electromechanical devices. Analyses of such effects and
their potential applications involve theoretical and computational electromagne-
tism, atomic, molecular and optical physics, and material science, among other
specialties.

While the field of Casimir physics is expanding rapidly, it appears to have
reached a certain level of maturity in some important respects. This is especially
true on the experimental side, where it seems that the main sources of imprecision
in force measurements have been identified. Another important achievement has
been the development of semi-analytical and numerical methods for the compu-
tation of Casimir forces between bodies of practically arbitrary shape. There has
also been significant progress in the basic theory of Casimir and related effects,
including quantum levitation, quantum friction, and dynamical Casimir effects.

In light of these developments, and with no end yet in sight to the broad-based
interest in Casimir physics, we felt that a book consisting of chapters written by
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internationally recognized leaders in the field would be both timely and of lasting
value. The seed idea for this book was a workshop on New Frontiers in Casimir
Force Control organized by us in Santa Fe, New Mexico, in September 2009. The
chapters that follow are approximately evenly divided with regard to theory and
experiment and deal mainly, though not exclusively, with surface-surface and
atom-surface Casimir effects. Most chapters include a review of a particular aspect
of Casimir physics in addition to a detailed presentation of the authors’ current
research and their perspective on possible future developments in the field. All the
chapters include extensive bibliographies.

This volume is not intended to be a unified textbook, but rather a collection of
mainly independent chapters written by prominent experts in the field. The
ordering of chapters is only by topic and not by degree of depth or specialization.
Therefore, the reading order is not at all prescribed by the ordering of the chapters.

We thank all the authors for taking valuable time from their research in order to
present detailed and carefully written articles in a style that should appeal to other
researchers in the field as well as to a broader audience. Thanks also go to
Christian Caron and Gabriele Hakuba at Springer for their editorial support.

Las Alamos, May 2011 D. A. R. Dalvit
P. W. Milonni
D. C. Roberts
F. S. S. Rosa
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Chapter 1
Introduction

Diego A. R. Dalvit, Peter W. Milonni, David C. Roberts
and Felipe S. S. Rosa

1.1 How the Casimir Force was Discovered

Casimir forces are associated with topological constraints on quantum fields. The
most famous such effect was predicted in 1948 by Casimir [1], who found that
there is an attractive force

F ¼ � p2�hc

240d4
ð1:1Þ

per unit area between two parallel, uncharged, perfectly conducting plates sepa-
rated by a distance d. Casimir derived this force as a consequence of the change in
the (infinite) zero-point electromagnetic field energy due to the presence of the
plates. Lifshitz [2], taking a more general approach based on electromagnetic
fluctuations in thermal equilibrium, obtained Casimir’s result as the perfect-con-
ductor limit of the force between two dielectric half-spaces separated by a vacuum.
While generally very weak except at very small separations, Casimir effects are of
great interest for both theoretical and practical reasons. Their very existence stands
in contradiction to the prediction of classical electrodynamics that there should
be no force, as is evident from the appearance of �h in (1.1). More
practical reasons for the recent interest in Casimir effects are their implications for
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micro-electromechanical (MEMS) devices and other systems in which material
components are in close proximity.

Casimir was led to his celebrated formula by some rather down-to-earth con-
siderations on the stability of colloids. In this sense the subject can be traced back
to the 1873 doctoral thesis of a struggling thirty-six-year-old graduate student,
Johannes van der Waals, who many years later (1910) would be awarded the Nobel
Prize in Physics. Van der Waals originally suggested a molecular interaction
potential of the form VðrÞ ¼ �Ar�1e�Br, where r is the distance between the
molecules and A and B are positive constants. It is now well understood, of course,
that there are different types of van der Waals forces. The simplest to understand is
the orientational (or Keesom) interaction between two molecules with permanent
electric dipole moments p1; p2 : VðrÞ ¼ �p2

1p2
2=3kTr6 at temperature T. The force

is attractive because attractive orientations are energetically favored over repulsive
ones. There is also an induction (or Debye) interaction between two molecules,
one of which has a permanent dipole (or quadrupole) moment. Neither of these
interactions is sufficiently general to account for the van der Waals equation of
state, which requires an attractive interaction even if the molecules have no per-
manent electric (or magnetic) moments. For this purpose what is required is a third
type of van der Waals interaction, first derived by London [3]. For two identical
molecules with polarizability aðxÞ, this dispersion force is

VðrÞ ¼ � 3�h

pr6

Z1

0

dna2ðinÞ � � C

r6
: ð1:2Þ

It is called a ‘‘dispersion’’ force because of the appearance of the molecular
polarizability, which determines the refractive index nðxÞ via the relation n2ðxÞ ¼
1þ 4pNaðxÞ for a sufficiently dilute medium of N molecules per unit volume. It is
important to note that aðinÞ is a real number, which follows from the Kramers–
Kronig relations between the real and imaginary parts of aðxÞ.

The dispersion force is, of course, important in many contexts [4], one of them
having to do with the stability of certain colloids, such as oil-in-water emulsions,
in which interactions between the suspended particles and the molecules of the
medium are negligible. Such a colloid is said to be stable if there is no coagulation.
An example of a stable colloidal suspension is homogenized milk, in which the
suspended particles are fat globules. Homogenization breaks up the globules into
pieces sufficiently small that, in addition to other effects, the attractive forces
between them are too weak to turn the milk into cream.

Colloidal stability requires that the repulsion between the suspended particles
be greater than the attractive dispersion force. Repulsion results from electrostatic
surface charges caused by adsorption of electrolyte ions in the liquid medium. In
the old but not yet retired Derjaguin-Landau-Verwey-Overbeek (DVLO) theory
the repulsive potential energy between two colloidal particles is calculated as the
energy required to remove the ions, and the repulsive force is compared to
the dispersion force between the particles. If the dispersion force is larger than the
repulsive force, the colloid is unstable.

2 D. A. R. Dalvit et al.



In the DLVO theory it is assumed that the attractive (van der Waals) interaction
varies as the inverse sixth power of the distance r between molecules, and that this
force is pairwise additive. However, based on their experimental work, Verwey
and Overbeek [5] wrote that, ‘‘In applying the theory of the attractive forces ... we
met with some difficulties ... because the London theory as such is not relativis-
tically invariant, and by working out this idea we found that ... a relativistic
correction may well become important.’’ According to them the finite speed of
light should cause the intermolecular van der Waals interaction to fall off more
rapidly with separation r than r�6. Following the suggestion of Verwey and
Overbeek, their colleagues at the Philips Laboratory in Eindhoven, Casimir and
Polder [6], revisited the London calculation to include retardation, or in other
words to include expðik � rÞ in the matrix elements appearing in perturbation
theory. Their calculation showed that, for intermolecular separations larger than
about 137 Bohr radii typically, the interaction energy between two identical
molecules with static (zero-frequency) polarizability a is

VðrÞ ¼ � 23�hc

4pr7
a2; ð1:3Þ

as opposed to (1.2). It turned out, according to Verwey and Overbeek [5], that this
result was ‘‘in fair accord’’ with what they concluded from their experiments.

Another feature of the van der Waals dispersion force is that it is nonadditive,
as was noted early on by Langmuir [7]. This nonadditivity emerges clearly in the
many-body theory summarized below, but it does not appear to have played any
significant role in the original DLVO theory.

The simple form of (1.3) led Casimir, after a suggestion by Niels Bohr, to
interpret it in terms of zero-point energy: ‘‘[Bohr] mumbled something about zero-
point energy. That was all, but it put me on a new track ...’’ [8]. This in turn led
him to derive the force (1) as another example of an effect attributable to zero-
point energy.

1.2 Zero-Point Energy

The concept of zero-point energy seems to have first appeared in Planck’s ‘‘second
theory’’ of blackbody radiation, and soon after it played a role in some of
Einstein’s work [9]. In a paper by Einstein and Stern in 1913 it was noted that,
without zero-point energy, the average energy of a harmonic oscillator of fre-
quency x is

E ¼ �hx

e�hx=kT � 1
ffi kBT � 1

2
�hx ð1:4Þ

if the thermal equilibrium temperature T satisfies kBT � �hx. To satisfy the
equipartition theorem to first order in �h in this classical limit we must include the
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zero-point energy 1
2 �hx. From such considerations Einstein and Stern concluded

that ‘‘the existence of zero-point energy [1
2 �hx] is probable’’. A bit later, however,

Einstein wrote to Ehrenfest that zero-point energy is ‘‘dead as a doornail’’ [10].
Experimental evidence for zero-point energy was reported by Mulliken in 1924

[11]. Consider an absorptive vibronic transition in a diatomic molecule A in which
the vibrational quantum numbers of the upper and lower states of the transition are
v0 and v00, respectively. The transition frequency is approximately

mAðv0; v00Þ ¼ me þ x0e v0 þ 1
2

� �
� x00e v00 þ 1

2

� �
ð1:5Þ

if anharmonic corrections are small. Here me is the electronic transition frequency
and x0e and x00e are the vibrational frequencies of the two electronic states. The
zero-point vibrational energies of the upper and lower states are then 1

2 hx0e and
1
2 hx00e , respectively. Now consider a second diatomic molecule B that differs only
isotopically from A; for this molecule, similarly, the transition frequency is

mBðv0; v00Þ ¼ me þ qx0e v0 þ 1
2

� �
� qx00e v00 þ 1

2

� �
; ð1:6Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mA=mB

p
and mA;mB are the reduced masses of the two molecules. For

the 0–0 bands,

mBð0; 0Þ � mAð0; 0Þ ¼
1
2
ðq� 1Þðx0e � x00e Þ; ð1:7Þ

which is nonzero only because of the zero-point vibrational energies of the two
molecules. Such an isotopic displacement was observed by Mulliken in the 0-0
bands for B10O16 and B11O16. He concluded that ‘‘it is then probable that the
minimum vibrational energy of BO (and doubtless other) molecules is 1/2
quantum’’.

Of course one can cite other evidence for zero-point energy. For example,
because of their small masses, He3 and He4 do not solidify at small pressures as
T ! 0 because their zero-point motion prevents crystallization. Many years ago
Debye noted that the zero-point translational energy of the atoms of a crystal
lattice causes a reduction in the intensity of radiation in X-ray diffraction even as
the temperature approaches absolute zero. In more recent years the zero-point
momentum distribution of atoms in Bose-Einstein condensates has been found to
have the smallest width consistent with the Heisenberg uncertainty relation [12].

One of the most frequently cited implications of zero-point electromagnetic
energy is the Lamb shift, or more specifically the dominant contribution to the
Lamb shift in atomic hydrogen. An argument originally due to Feynman goes as
follows [13]. Imagine we have a box of volume V containing N identical atoms per
unit volume. The frequencies of the allowed field modes in the box are changed
from their vacuum values x to x=nðxÞ, where nðxÞ ffi 1þ 2pNaðxÞ is the
refractive index of the (dilute) gas. The change in the zero-point field energy in the
box due to the presence of the gas is therefore

4 D. A. R. Dalvit et al.



DE ¼
X
k;k

1
2

�hxk

nðxkÞ
� 1

2
�hxk

� �
ffi �

X
k;k

½nðxkÞ � 1� 1
2

�hxk ¼ �p�hN
X
k;k

xkaðxkÞ;

ð1:8Þ

where the k’s and k’s are the mode wave vectors and polarization labels,
respectively. For a large box we can replace the discrete summation over modes by
an integration:

P
k;k ! ðV=8p3Þ

P
k

R
d3k. Then, in the limit of a single atom

(NV ! 1),

DE ¼ � �h

pc3

Z
dxx3aðxÞ: ð1:9Þ

Subtracting the free-electron energy, and introducing a high-frequency cutoff
mc2=�h in this nonrelativistic approach, one obtains Bethe’s approximation to the
Lamb shift of a one-electron atom in a state with polarizability aðxÞ [14]. For the
2s1=2 � 2p1=2 Lamb shift in hydrogen, Bethe computed 1040 MHz, in good
agreement with the measured shift of about 1058 MHz. Thus the largest part of
this Lamb shift is attributable to the change in the zero-point field energy due to
the mere presence of the atom.

We can think of this a little differently by first recalling that the energy involved
in inducing an electric dipole moment d ¼ aE in an electric field E is

W ¼ �ð1=2ÞaE2: ð1:10Þ

For an atom in a state with polarizability aðxÞ in a field of frequency x, this energy
is just the quadratic ac Stark shift of the state. Now for an atom in vacuum there is
a continuum of field frequencies, and we obtain the energy shift due to the zero-
point field by integrating over all frequencies. In the integrand in this case we set
ð1=4pÞE2 equal to q0ðxÞdx, where q0ðxÞdx is the zero-point field energy per unit
volume in the frequency interval ½x;xþ dx�. Then

W ¼ � 1
2

Z1

0

aðxÞ4pq0ðxÞdx; ð1:11Þ

which is the same as (1.9), since

q0ðxÞ ¼
x2

p2c3

1
2

�hx

� �
: ð1:12Þ

In other words, the Lamb shift can be regarded as a Stark shift caused by the
vacuum electric field.

The same sort of argument can be used to obtain the van der Waals dispersion
interaction between two polarizable particles. Thus, for atom A, there is a con-
tribution of the form (1.10) from each frequency x of the field, and this contri-
bution depends on the polarizability aAðxÞ of atom A. The field EðrA; tÞ acting on
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atom A is the vacuum field E0ðrA; tÞ at rA plus the field EBðrA; tÞ at rA due to atom
B. The latter field is just the field from the electric dipole induced in B by the
vacuum field at rB, and this brings in the polarizability aBðxÞ of atom B. We thus
obtain for atom A (and likewise for atom B) an energy that depends in part on
r ¼ jrA � rBj; this r-dependent interaction energy has the general form

VðrÞ / � �h

c3r3

Z1

0

dxx3aAðxÞaBðxÞGðxr=cÞ: ð1:13Þ

The detailed functional form of Gðxr=cÞ, which is an oscillatory function of xr=c,
need not concern us, as (1.13) as it stands is sufficient to determine the form of the
interaction at large separations: for large r we expect substantial cancellations due
to the oscillatory nature of Gðxr=cÞ, and on this basis we expect to obtain the
correct r-dependence of V(r) by cutting off the upper limit of integration at a
frequency � c=r. Then [15]

VðrÞ / � �h

c3r3
a2
Zc=r

0

dxx3Gðxr=cÞ ¼ � �hc

r7
a2
Z1

0

dxx3GðxÞ; ð1:14Þ

where we have assumed the two atoms to be identical and replaced their polar-
izability aðxÞ by the static polarizability a under the assumption that c/r is much
smaller than the frequency of any transition that makes a significant contribution to
aðxÞ. Thus we obtain in this way the correct r dependence of the retarded van der
Waals interaction.

We can derive the exact form of the van der Waals interaction for all r by this
approach based on zero-point field energy. Neither molecule in the dispersion
interaction has a permanent dipole moment; each has a fluctuating dipole
moment induced by the vacuum field at its position, and from this perspective there
is a nonvanishing force because the vacuum field correlation function
hEiðrA; tÞEjðrB; tÞi 6¼ 0 [14]. That is, the dipole moments induced by the fluctu-
ating zero-point electric field are correlated over finite differences, leading to a
nonvanishing expectation value of the intermolecular interaction energy. In a
similar fashion we can obtain, for instance, the van der Waals interaction for
magnetically polarizable particles [16].

Another effect of retardation considered by Casimir and Polder [6] is the
potential energy of an atom in the vicinity of a perfectly conducting wall. For short
distances d between the atom and the wall the potential V(d) may be deduced from
the electric dipole-dipole interaction between the atom and its image in the wall,
and obviously varies as 1=d3. At large distances, however, retardation becomes
important and, as in the interatomic van der Waals interaction, the interaction is
reduced by a factor 1/(distance), i.e., VðdÞ / 1=d4.

Here again the simple formula (1.10) provides a way to a simple derivation of
this result of Casimir and Polder. The Stark shift (1.10) for an atom in a state with
polarizability aðxÞ in this example becomes

6 D. A. R. Dalvit et al.



W ¼ � 1
2

X
k;k

aðxÞE2
k;kðxAÞ; ð1:15Þ

where the summation is over all modes, k and k again denoting wave vectors and
polarizations, and Ek;kðxAÞ is the zero-point electric field from mode ðk; kÞ at the
position xA of the atom. In the half-space in which the atom is located the mode
functions are determined, of course, by Maxwell’s equations and the boundary
conditions on the fields. Consider first a rectangular parallelepiped with sides of
length Lx ¼ Ly ¼ L and Lz, its surfaces being assumed to be perfectly conducting.
The zero-point electric field E inside the parallelepiped can be expanded in terms
of a complete set of mode functions such that the the boundary conditions are
satisfied and

1
4p

Z
d3rE2ðrÞ ¼

X
k;k

1
2

�hxk: ð1:16Þ

The Cartesian components of E for each mode ðk; ek;kÞ are

ExðrÞ ¼
16p�hx

V

� �1=2

ex cosðkxxÞ sinðkyyÞ sinðkzzÞ;

EyðrÞ ¼
16p�hx

V

� �1=2

ey sinðkxxÞ cosðkyyÞ sinðkzzÞ;

EzðrÞ ¼
16p�hx

V

� �1=2

ez sinðkxxÞ sinðkyyÞ cosðkzzÞ;

ð1:17Þ

where e2
x þ e2

y þ e2
z ¼ 1, the volume V ¼ L2Lz, and

kx ¼
‘p
L
; ky ¼

mp
L
; kz ¼

np
Lz
: ð1:18Þ

All positive integers and zero are allowed for ‘;m, and n. As in the derivation of
(1.14) we replace aðxÞ by the static polarizability a ¼ að0Þ in (1.15) and write, for
an atom at ðL=2; L=2; dÞ,

WðdÞ ¼ � 1
2

a
X

k

16pxk

V
e2

x cos2 1
2

kxL

� �
sin2 1

2
kyL

� �
sin2ðkzdÞ

�

þ e2
y sin2 1

2
kxL

� �
cos2 1

2
kyL

� �
sin2 1

2
kzd

� �

þe2
x sin2 1

2
kxL

� �
sin2 1

2
kyL

� �
cos2 1

2
kzd

� ��
: ð1:19Þ

The squares of the sines and cosines involving kx and ky are rapidly varying and
can be replaced by their average value, 1/2, so that (1.19) is replaced by
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WðdÞ ¼ �
� 2p�ha

V

�X
k

xk

h
ðe2

x þ e2
yÞ sin2ðkzdÞ þ e2

z cos2ðkzdÞ
i
: ð1:20Þ

In the limit d !1 in which the atom is infinitely far away from the wall at z = 0
we can also replace sin2ðkzdÞ and cos2ðkzdÞ by their averages:

Wð1Þ ¼ �
� 2p�ha

V

�X
k

xk

h 1
2
ðe2

x þ e2
y þ e2

z Þ
i
¼ �

� 2p�ha
V

�X
k

1
2
xk: ð1:21Þ

We define the interaction energy as

VðdÞ ¼ WðdÞ �Wð1Þ ¼ �
� 2p�ha

V

�X
k

xk½e2
x þ e2

y � e2
z � sin2ðkzdÞ �

1
2

� �

¼
�p�ha

V

�X
k

xk cosð2kzdÞ 	 ð2k2
z=k2Þ;

ð1:22Þ

where we have used the fact that e2
kk ¼ 1 and k � ekk ¼ 0 for each mode. V(d) is

easily evaluated when we use the fact that there is a continuum of allowed k
vectors and that xk ¼ kc:

VðdÞ ¼
� 2p�ha

V

� V

8p3

Z
d3k

k2
z

k2
cosð2kzdÞ

¼
� a�hc

2p

�Z1

0

dkk3
Z2p

0

dh sin h cos2 h cosð2kd cos hÞ

¼ � 3a�hc

8pd4
; ð1:23Þ

which is exactly the result of Casimir and Polder [6].
We cannot invoke directly such arguments based on (1.10) in the case of the

Casimir force (1.1), but, as Casimir showed, we can obtain the force by calculating
the change in the zero-point field energy when the plates are separated by a
distance d compared to when they are infinitely far apart. Since Casimir’s cal-
culation is reproduced in various ways in many other places, we will here present
only a simple, heuristic derivation.

Recall that there are ðx2=p2c3Þdx modes in the (angular) frequency interval
½x;xþ dx�, and that each mode has a zero-point energy �hx=2. Between the
plates the components of the mode vectors perpendicular to the plates are
restricted to values \p=d. There is no such restriction on modes propagating in
the two directions parallel to the plates, so we might guess that, to obtain
approximately the zero-point field energy in a volume Ad between the plates,
we can use the free-space energy density with a lower bound bpc=d, where
b� 1=3:

8 D. A. R. Dalvit et al.



E ¼ Ad

Z1

pcb=d

dx
1
2

�hx	 x2

p2c3

� �
¼ Ad

Z1

0

dx
�hx3

2p2c3
� Ad

Zpcb=d

0

dx
�hx3

2p2c3
: ð1:24Þ

Ignoring the first term in the second equality, which is a bulk-volume contribution
and would imply an infinite force, independent of d, we define the potential energy

VðdÞ ¼ �Ad

Zpcb=d

0

dx
�hx3

2p2c3
¼ �Ad

�h

8p2c3

pcb
d

� �4

: ð1:25Þ

As noted, b should be around 1/3; let us take b ¼ 0:325 ¼ ð1=90Þ1=4. Then

VðdÞ ¼ �A
p2�hc

720d3
; ð1:26Þ

or FðdÞ ¼ �V 0ðdÞ=A ¼ �p2�hc=240d4, which is Casimir’s result (1.1). Of course a
more serious derivation should also take account of the effects of zero-point fields
in the regions outside the two plates, but in the present example we can ignore
them [17].

1.3 The Lifshitz Theory and Its Generalizations

In his generalization of Casimir’s theory for perfect conductors at zero tempera-
ture, Lifshitz [2] considered two dielectric half-spaces separated by a vacuum
region of width d and allowed for finite (equilibrium) temperatures. He calculated
the force between the dielectrics using the macroscopic Maxwell equations and the
stress tensor in the vacuum region, assuming a noise polarization consistent with
the fluctuation-dissipation theorem. Lifshitz’s approach employs stochastic fields,
but is equivalent to a formulation based on operator-valued fields [18]. The
(positive-frequency) Fourier transform Êðr;xÞ of the electric field operator Êðr; tÞ
satisfies

�r	r	 Êðr;xÞ þ x2

c2
eðr;xÞÊðr;xÞ ¼ �x2

c2
K̂ðr;xÞ; ð1:27Þ

with the noise polarization operator K̂ðr;xÞ having the properties

hK̂yi ðr;xÞK̂jðr0;x0Þi ¼ 4�heIðxÞdijdðx� x0Þd3ðr� r0Þ 1

e�hx=kBT � 1
; ð1:28Þ

hK̂iðr;xÞK̂yj ðr0;x0Þi ¼ 4�heIðxÞdijdðx� x0Þd3ðr� r0Þ 1

e�hx=kBT � 1
þ 1

� �
; ð1:29Þ
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where eIðxÞ is the imaginary part of the permittivity eðxÞ. For simplicity we
restrict ourselves here to zero temperature, so that expectation values will refer to
the ground state of the matter-field system rather than a finite-temperature thermal
equilibrium state.

We first outline a derivation based on a stress tensor that leads to a rather
general expression (1.39) from which Lifshitz’s formula for the force is obtained.
Recall first that in classical electromagnetic theory it follows from the macroscopic
Maxwell equations that the force density in a dielectric medium in which there are
electric and magnetic fields, but no free charges or currents, has components
fi ¼ ojTij, where the stress tensor

Tij ¼
1

4p
EiDj þ HiHj �

1
2
ðE � DþH �HÞdij

� �
: ð1:30Þ

Then

fi ¼
1

8p
½ðoiEjÞDj � EjðoiDjÞ� ð1:31Þ

when it is assumed that ðo=otÞðD	HÞ=4pc, the rate of change of the Minkowski
expression for the momentum density of the field, can be taken to be zero, as is
appropriate under equilibrium conditions. We are also assuming isotropic media,
in which case the Minkowski stress tensor (1.30) is symmetric.

When the field is quantized we replace Ej and Dj in (1.31) by operators,
symmetrize, and take expectation values:

fi ¼
1

8p
Re
h
hðoiÊjÞD̂ji � hÊjðoiD̂jÞi

i
: ð1:32Þ

In terms of the Fourier transforms of the electric and displacement fields,

fiðrÞ ¼
1

8p
Re

Z1

�1

dx
Z1

�1

dx0
n
h½oiÊjðr;xÞ�D̂jðr;x0Þi � hÊjðr;xÞ½oiD̂jðr;x0Þ�i

o
:

ð1:33Þ

Since D̂ðr;xÞ ¼ �ðr;xÞÊðr;xÞ þ K̂ðr;xÞ,

hÊjðr;xÞD̂jðr0;x0Þi ¼ �ðr0;x0ÞhÊjðr;xÞÊjðr0;x0Þi þ hÊjðr;xÞK̂jðr0;x0Þi: ð1:34Þ

In the second term on the right we use

Êjðr;xÞ ¼
1

4p

Z
d3r00Gjiðr; r00;xÞK̂iðr00;xÞ; ð1:35Þ

where G is the dyadic Green function satisfying
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�r	r	 Gðr; r0;xÞ þ x2

c2
eðr;xÞGðr; r0;xÞ ¼ �4p

x2

c2
d3ðr� r0Þ; ð1:36Þ

while in the first term [19],

hÊjðr;xÞÊjðr0;x0Þi ¼
�h

p
ImGjjðr; r0;xÞdðx� x0Þ: ð1:37Þ

It follows from the (zero-temperature) fluctuation-dissipation relations (1.28) and
(1.29) that

RehÊjðr;xÞD̂jðr0;x0Þi ¼
�h

p
Im½eðr0;xÞGjjðr; r0;xÞ�dðx� x0Þ; ð1:38Þ

and, from (1.33),

fiðrÞ ¼ �
�h

8p2
Im

Z1

0

dx½oieðr;xÞ�Gjjðr; r;xÞ: ð1:39Þ

Equation (1.39) gives the force density due to (non-additive) intermolecular van
der Waals dispersion interactions. Its evaluation requires, however, a calculation
of the (classical) dyadic Green function, which is generally very hard to do ana-
lytically except in a few highly symmetric configurations. In the case of two
dielectric half-spaces, for example, (1.39) has been used to derive the Lifshitz
expression for the force per unit area between two dielectric half-spaces, and to
generalize the original Lifshitz formula to allow for a third dielectric material
between the half-spaces [20–23].

Dzyaloshinskii et al. [20–22] obtained (1.39) in a diagrammatic approach leading
to a free energy E having the form of a summation over all n-body van der Waals
interactions:

E ¼ � �h

2p
Im

Z1

0

dxTr½aG0 þ 1
2
a2G0G0 þ 1

3
a3G0G0G0 þ � � ��: ð1:40Þ

Here G0 is the free-space Green function satisfying (1.36) with eðxÞ ¼ 1 for all
frequencies x, and aðxÞ is again the complex, frequency-dependent polarizability
of each particle. The first term in brackets is a single-particle self-energy, while the
other terms correspond successively to two-body, three-body, etc. van der Waals
interactions. The second term, for example, written out explicitly as

Tr
1
2
a2G0G0

� �
¼
XN

m;n¼1

a2G0
ijðrn; rm;xÞG0

jiðrm; rn;xÞ; ð1:41Þ

gives, excluding terms with m ¼ n, the sum of pairwise van der Waals interaction
energies of N atoms for arbitrary interparticle separations jrn � rmj. The third
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term in brackets in (1.40), similarly, can be shown to yield the three-body van der
Waals interaction obtained by Axilrod and Teller [24]. In the model in which the
atoms form a continuous medium, equation (1.41), for instance, is replaced by

Z
d3r

Z
d3r0NðrÞNðr0Þa2G0

ijðr; r0;xÞG0
jiðr0; r;xÞ � Tr

e� 1
4p

� �2

½G0�2;

where NðrÞ is the number of atoms per unit volume at r and the formula eðxÞ ¼
1þ 4pNaðxÞ has been used to relate the permittivity and the polarizability.
Similarly (1.40) is replaced by

E ¼ � �h

2p
Im

Z1

0

dxTr
X1
n¼1

1
n

e� 1
4p

� �n

G0
	 
n ð1:42Þ

in the continuum approximation.
Since the free-space Green dyadic G0 is independent of any properties of the

medium, a variation dE of E can depend only on a variation de of e:

dE ¼ � �h

8p2
Im

Z1

0

dxd�Tr
X1
n¼0

e� 1
4p

� �n

½G0�nþ1: ð1:43Þ

From (1.36) we obtain the identity

G ¼ G0 þ G0 e� 1
4p

� �
G; ð1:44Þ

which allows us to rewrite (1.43) as

dE ¼ � �h

8p2
Im

Z1

0

dx
Z

d3rdeðr;xÞGiiðr; r;xÞ: ð1:45Þ

Now an infinitesimal local transport uðrÞ of the medium implies a variation in e at
r such that eðr;xÞ þ deðr;xÞ ¼ eðr� u;xÞ, or deðr;xÞ ¼ �re � u. Therefore

dE ¼ � �h

8p2
Im

Z1

0

dx½�re � u�Giiðr; r;xÞ ¼ �
Z

d3rfðrÞ � u; ð1:46Þ

where the Casimir force density fðrÞ is defined by (1.39). The quantum-field-
theoretic approach of Dzyaloshinskii et al. [20–22] thus establishes the connection
between the non-additive, many-body van der Waals interactions and macroscopic
quantum-electrodynamical approaches such as the stress-tensor formulation out-
lined above.

Another approach to the calculation of Casimir forces between dielectrics, based
directly on considerations of zero-point energy, was taken van Kampen et al. [25]
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and others in a rederivation of Lifshitz’s formula for the force between two
dielectric half-spaces. In this approach Maxwell’s equations and the appropriate
boundary conditions lead to a requirement that the allowed (nontrivial) modes
satisfy Fbðx; dÞ ¼ 0, where the Fb are meromorphic functions of frequency. The
total zero-point energy associated with all the allowed modes, i.e., �h=2 times the
sum of the zeros of the functions Fb, is then obtained from a generalization of the
argument theorem for meromorphic functions, and from this one can obtain the
Lifshitz formula.

A fundamental assumption made by Lifshitz is that the dielectric media are well
described by continua characterized by dielectric permittivities. This allows the
sum of all the many-body van der Waals forces to be obtained via the macroscopic
Maxwell equations [26]. This assumption for material media is made, usually
implicitly, in practically all theories of Casimir forces, and it appears to be an
excellent approximation under practical experimental circumstances. One of the
most accurate tests of the Lifshitz formula for the force between dielectric half-
spaces was conducted many years ago by Sabisky and Anderson [27]. Using
measured data and an analytic fit for the dielectric constants, they compared the
predictions of the Lifshitz formula for the variation of the vapor pressure with film
thickness of liquid helium, and reported agreement to within a few per cent
between theory and experiment.

The formula for the force F(d) per unit area obtained by Lifshitz [2] can be
generalized not only to include a material medium between the half-spaces but
also to allow all three media to be magnetodielectric:

FðdÞ ¼ � �h

2p2

Z1

0

dkk

Z1

0

dnK3

 hðe3K1 þ e1K3Þðe3K2 þ e2K3Þ
ðe3K1 � e1K3Þðe3K2 � e2K3Þ

e2K3d � 1
i�1

þ ðl3K1 þ l1K3Þðl3K2 þ l2K3Þ
ðl3K1 � l1K3Þðl3K2 � l2K3Þ

e2K3d � 1
i�1

� !
; ð1:47Þ

where ej and lj are now respectively the electric permittivity and the magnetic
permeability of medium j(=1, 2, 3) evaluated at imaginary frequencies: ej ¼ ejðinÞ;
lj ¼ ljðinÞ, and K2

j ¼ k2 þ ejljn
2=c2. The terms depending explicitly on ej and lj in

this formula have the form of Fresnel reflection coefficients. In fact in a more
computationally useful ‘‘scattering’’ approach, Casimir forces between objects in the
case of more general geometries are expressed in terms of the scattering matrices
[28, 29]. For example, for media in which only specular reflection occurs, the
Casimir force per unit area in the special case of the Lifshitz geometry with vacuum
between the half-spaces is given by

FðdÞ ¼ � �h

4p3

Z1

0

dn
Z

d2kK3Tr
R1 � R2e�2K3d

1� R1 � R2e�2K3d
: ð1:48Þ
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R1 and R2 are 2	 2 reflection matrices for generally anisotropic magnetodi-
electric media and K2

3 ¼ k2 þ n2=c2.

1.4 Overview of Experiments

The Casimir force is typically very small, even in the case of perfectly conducting
plates. For two 1	 1 cm plates separated by 1 lm, for example, equation (1.1)
predicts a force of 0.013 dyne. This is comparable to the Coulomb force on the
electron in the hydrogen atom, or to the gravitational force between two one-pound
weights separated by half an inch, or to about 1/1000 of the weight of a housefly.
Not surprisingly, therefore, it took quite a few years before it was unambiguously
measured. Here we briefly review some of the earlier experiments. More detailed
discussions of some of these experiments, as well as more recent work, can be
found in the following chapters.

The earliest experiments measuring van der Waals forces between macroscopic
objects were performed by Derjaguin et al. in the 1950s and earlier [30]. The
alignment difficulties in experiments with parallel plates led this group to work
instead with a spherical lens and a plate. It was shown that the force between a
sphere of radius R and a flat surface a distance d away is approximately

FðdÞ ¼ 2pRuðdÞ; ð1:49Þ

where u(d) is the interaction energy per unit area between two flat, parallel sur-
faces separated by d. This approximation, valid when d 
 R, has come to be
known as the Derjaguin or ‘‘proximity force approximation (PFA)’’, and although
it is derived under the assumption of pairwise additive forces between local surface
elements, it has been an important and surprisingly accurate tool in the comparison
of measured forces with theories for perfectly flat, parallel surfaces [31]. Dis-
cussions and references to theoretical analyses of the range of validity of the PFA
may be found in several of the following chapters. Measurements of the forces
between a flat surface and spheres of different radii have demonstrated that the
PFA is fairly accurate for values of d and d / R in the range of many experiments
[32].

Experiments of Derjaguin et al. for separations of 0.1–0.4 lm between quartz
plates provided the stimulus for Lifshitz’s theory [30]. The comparison with the
Lifshitz theory was complicated in part by incomplete information about eðinÞ for
quartz over all its different absorption regions. On the basis of rough estimates,
Lifshitz concluded that ‘‘the agreement between the theory and the experimental
data is satisfactory’’ [2], although in his paper he provided few details. Forces
measured much later were found to ‘‘fit well’’ with the Lifshitz theory in the
retarded regime of large separations, but detailed comparisons of theory and
experiments were again hampered by insufficient data for the permittivities
required in the Lifshitz formula.
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Sparnaay [33] reviewed experimental progress up to 1989, and some of the
rapid progress, both theoretical and experimental, in more recent times has been
the subject of reviews and special issues of journals that are extensively cited in
the following chapters. In Sparnaay’s own early experiments [34, 35] the force was
inferred from the deflection of a spring attached via an aluminum rod to one of the
metal plates. For plate separations of 2–10 lm, Sparnaay measured attractive
forces per unit area of magnitude between about 1 and 4	 10�18 dyn cm2=d4,
compared with the 1:3	 10�18 dyn cm2=d4 calculated from Casimir’s formula
(1.1). Prior to more recent work, Sparnaay’s experiments were often cited as the
first experimental verification of the Casimir force, but Sparnaay himself con-
cluded only that his observed forces ‘‘do not contradict Casimir’s theoretical
prediction’’.

Experiments reported by Lamoreaux [36, 37] and Mohideen et al. [38–40] in
1997 and 1998 marked the beginning of a new era of much more precise mea-
surements of Casimir forces. Lamoreaux performed Cavendish-type experiments
employing torsion balances, whereas Mohideen’s group pioneered the use of an
atomic force microscope (AFM) system wherein the Casimir force is determined
from the reflection of a laser beam off the AFM cantilever tip and its displacement
as measured by photodiodes. The agreement of these experiments with theory
appears to be on the order of perhaps several per cent. This great improvement in
accuracy compared to earlier experiments stems in part from the availability of
much better mechanical, surface characterization, and data acquisition tools. The
measurements of Lamoreaux and Mohideen et al. also avoided the problem of
stiction associated with previous balance mechanisms.

Another very significant step in the direction of improved accuracy of Casimir
force measurements was reported by Chan et al. [41, 42] in 2001, who measured
the Casimir force based on the shift in the frequency of a periodically driven
MEMS torsional oscillator (MTO) or on the torque exerted on a plate by a metallic
sphere. Two years later Decca et al [43] reported the first highly accurate mea-
surement of the Casimir force between two dissimilar metals based on an MTO
system.

De Man et al. [44, 45] have described AFM Casimir-force measurements that
allow for continuous calibration together with compensation of residual electro-
static effects. Experiments measuring the force in air between a gold-coated sphere
and a glass surface coated with either gold or a conductive oxide demonstrated that
residual electrostatic effects could be effectively eliminated, while the Casimir
force was substantially reduced, as expected, when the gold surface was replaced
by the transparent oxide film. These authors have also introduced a ‘‘fiber-top
cantilever’’ design that could allow Casimir force measurements under environ-
mental conditions that would preclude measurements employing existing labora-
tory instrumentation.

Substantial progress has also been made in the measurement of the Casimir-
Polder force. A particularly noteworthy experiment was that of Sukenik et al. [46]
in which the opacity of a sodium beam passing through a gold-plated channel was
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measured. Assuming that a sodium atom, hitting a gold surface as a consequence
of the Casimir-Polder attractive force, sticks without bouncing, Sukenik et al.
found excellent agreement between their data and the atom-surface interaction
predicted by Casimir and Polder.

This brief overview of experimental progress is hardly meant to be exhaustive.
In the remaining chapters there are � 103 citations to the literature on Casimir
effects, a significant portion of it addressing observed Casimir effects and related
experimental issues.

1.5 Some Other Aspects of Casimir Forces

The following chapters provide detailed discussions of many of the most inter-
esting theoretical as well as experimental aspects of Casimir effects. As expected
from their relation to the ubiquitous van der Waals forces, Casimir effects are
involved directly or indirectly in a wide variety of physical phenomena, and it is
probably impossible to address all aspects of them in any detail in a single volume.
Here we briefly mention a few related topics of current interest that are either not
dealt with or only briefly alluded to in this book.

Most of the work on van der Waals–Casimir-Lifshitz forces between material
bodies has dealt with perfect conductors or dielectric media. If we take e1 ¼ e2 !1
and e3 ¼ 1 for all frequencies, we obtain from the Lifshitz formula (1.48) the
attractive Casimir force (1.1) for two perfectly conducting parallel plates separated
by a vacuum. For identical dielectric half-spaces separated by a vacuum, the force is
likewise always attractive. If the dielectric media are different, however, the force
can be repulsive under certain conditions, e.g., if e1 [ e3 [ e2 over a sufficiently
wide range of frequencies. Such a repulsion was predicted by Dzyaloshinksii et al.
[20–22] and can be applied, for instance, to explain the tendency of liquid helium to
climb the walls of its container: the helium vapor is repelled by the walls, and the
helium liquid moves in to fill the space left by the vapor. The repulsive force resulting
from regions of different permittivity appears to be well known among colloid
scientists [47], and has recently been directly observed by Munday et al. [48], who
measured a repulsive force between a gold sphere and a glass surface immersed in
bromobenzene.

In recent years it has been recognized that stiction due to attractive Casimir
forces should be taken into account in the design of nanomechanical devices.
There has consequently been a growing interest in the control of Casimir forces
and in particular in the possibility of realizing repulsive Casimir forces between
vacuum-separated objects. This in turn has led to the consideration of metama-
terials that might be engineered to have permittivities and permeabilities that
would allow a degree of control of Casimir forces that would not be possible
with naturally occurring materials. An indication of how magnetic properties
of materials might be used to control Casimir forces can be seen by taking
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e1 ¼ l2 !1 and e3 ¼ 1 for all frequencies, in which case we obtain from (1.48) a
repulsive force with a magnitude of 7/8 times the magnitude of the Casimir force,
as first shown in a different way by Boyer [49]. In a similar vein it was shown by
Feinberg and Sucher [50] that the van der Waals interaction between two atoms,
one electrically polarizable and the other magnetically polarizable, is repulsive.

Computations based on the Lifshitz theory and formulas for permittivities and
permeabilities of some existing metamaterials suggest, however, that repulsion
will be difficult to realize [51]. In fact Rahi et al. [52] have shown under some
rather general conditions of physical interest that Casimir interactions cannot
produce a stable equilibrium for any collection of dielectric objects whenever all
their permittivities are larger or smaller than the permittivity of the medium in
which they are immersed. In the case of metamaterials their arguments indicate
that repulsive forces between two objects might only be possible at short distances,
in which case a metamaterial surface cannot be assumed to have continuous
translational symmetry. Even in this case, however, a repulsion cannot result in a
stable equilibrium.

Casimir forces are notoriously difficult to compute for arbitrary geometries. The
best-known paradigm here is the Casimir force on a perfectly conducting spherical
shell, which Casimir assumed would be attractive. As first shown by Boyer [53]
after ‘‘a long nightmare of classical special function theory’’, however, the force in
this case is repulsive. In addition to the chapters in this volume addressing
numerical approaches to Casimir-force computations, we call attention here to the
work of Schaden [54], who has used a semiclassical approach to compute, among
other things, the force on a spherical conducting spherical shell to an accuracy
within 1% of the exact expression.

In various extensions of the Standard Model of elementary particles there
appear non-gravitational, long-range forces between electrically neutral bodies.
Experimental constraints on such forces can be determined by Casimir as well as
gravitational experiments, and the rapid progress in high-precision Casimir
experiments has contributed to an increased interest in this area. We refer the
reader to the last chapter of the book by Bordag et al. [38–40] for a discussion of
this topic and references to recent work.

Casimir effects are almost always interpreted in terms of zero-point field
energy. It is, however, possible to interpret Casimir effects without reference to
zero-point field energy. For instance, the Lifshitz formula can be derived from
Schwinger’s source theory in which ‘‘the vacuum is regarded as truly a state with
all physical properties equal to zero’’ [23]. In conventional quantum electrody-
namics Casimir forces can also be obtained without explicit reference to vacuum
field fluctuations, although of course such fluctuations are implicit in the theory
[55]. In a different approach Jaffe [56] has also shown that Casimir effects can be
calculated ‘‘without reference to zero-point energies’’, and suggests that approa-
ches based on zero-point energy ‘‘won out‘‘ because they are much simpler.

Finally we note that there are classical analogs of the Casimir force. A ther-
modynamic analog occurs in the case of two surfaces in a binary liquid mixture
that is close to the critical point [57–59]. The analog of the electromagnetic field
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fluctuations between plates in the Casimir effect is in this case the fluctuations in
the concentrations in the liquid between the two surfaces. The force acting on the
surfaces can be attractive or repulsive, depending on whether the adsorptive
characteristics of the two surfaces are similar or dissimilar. Both attraction and
repulsion in this ‘‘critical Casimir effect’’ have been observed in experiments
measuring forces of the same order of magnitude as the forces observed in
(quantum) Casimir-force experiments, and the measured forces confirmed theo-
retical predictions.

1.6 Brief Outline of this Book

The ordering of chapters in this volume is only by topic and not by degree of depth
or specialization. The first five chapters are concerned primarily with the theory of
surface-surface Casimir effects. Pitaevskii discusses the problems that were
encountered in the generalization of the original Lifshitz theory to the case of
forces within dielectric media, especially in connection with a general formulation
of the stress tensor. He reviews how the desired generalization was finally
achieved by many-body diagrammatic methods applicable under conditions of
thermal equilibrium. The important role of mechanical equilibrium and pressure
gradients in the theory of dielectric bodies separated by a fluid is emphasized, and
a physical interpretation is given for the repulsive forces predicted by the gen-
eralized Lifshitz theory for dielectrics. The chapter by Milton focuses on the nature
of the divergences incurred in calculations of Casimir self-energies, such as that
for a conducting spherical shell, based on the model of a massless scalar field and
delta-function potentials. He distinguishes between the global divergence associ-
ated with the total zero-point energy and the local divergences occurring near
boundaries; a unique and finite self-energy is obtained after isolating the global
divergence. In the case of parallel plates it is shown that both the finite Casimir
self-energy and the divergent self-energies of the plates are consistent with the
equivalence principle, and therefore that the divergent self-energies in particular
can be absorbed into the masses of the plates. This suggests a general ‘‘renor-
malization’’ procedure for absorbing divergent self-energies into the properties of
boundaries. The following three chapters describe techniques for the computation
of Casimir effects for arbitrarily shaped objects. Lambrecht, Canaguier-Durand,
Guérout and Reynaud, and Rahi, Emig and Jaffe, focus on the recently developed
scattering theory approach and provide valuable introductions to methods they
have developed. Lambrecht et al describe computations for several different
configurations and make interesting comparisons with the predictions of the PFA,
while Rahi et al consider a different set of examples and also address in detail the
constraints on stable equilibria presented in Reference [52]. Johnson reviews a
wide variety of methods in classical computational electromagnetism that can be
applied to the evaluation of various Casimir effects, and offers illuminating per-
spectives on the strengths and weaknesses of each approach.
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The next four chapters describe various experimental aspects of surface-surface
Casimir forces. Lamoreaux reviews some recent experimental progress and then
discusses, among other things, some of the implicit approximations that have
‘‘wittingly or unwittingly’’ been adopted in all Casimir force experiments,
including his own seminal experiments. These include the PFA and various
assumptions about electrostatic calibrations and contact and patch potentials. He
cautions against confusing precision and accuracy in Casimir force measurements.
Capasso, Munday, and Chan discuss high-precision measurements in MEMS,
including applications to nonlinear oscillators for position measurements at the
nanoscale, and then describe their experiments demonstrating a reduction in the
magnitude of Casimir forces by different effects. They also discuss their experi-
ments on repulsive Casimir forces [41, 42] and possibilities for realizing quantum
levitation and Casimir torques between birefringent materials. Decca, Aksyuk, and
López discuss advantages of using MEMS for the measurement of Casimir forces;
as mentioned earlier, these devices have been used to measure Casimir forces
between metallic objects in vacuum to a very high degree of accuracy [43].
Decca et al also discuss electrostatic calibration and other matters involved in
Casimir force experiments, and describe potential opto-mechanical experiments
that might allow further improvements in the precision of Casimir force mea-
surements. Van Zwol, Svetovoy, and Palasantzas address the requirement, for any
comparison of theory and experiment, of having accurate values of optical per-
mittivities; they emphasize that the permittivities of conducting films, which are
needed for all frequencies in the Lifshitz theory, are not always reliably given by
tabulated data, since they can vary significantly from sample to sample, depending
on how the samples are prepared. They describe determinations of the complex
permittivities of gold films over a wide range of frequencies. Van Zwol et al. also
discuss the characterization of surface roughness by imaging methods, and how
such images can be used to characterize surface roughness and to calculate the
correction to the surface-surface Casimir force due to it. They discuss the
importance of the ‘‘distance upon contact’’ between two rough surfaces and its
importance in the determination of their absolute separation and therefore of the
Casimir force.

Atom-surface and dynamical Casimir effects are the subject of the remaining
three chapters. Intravaia, Henkel, and Antezza review the theory of the Casimir-
Polder interaction and some recent developments relating, among other things,
to non-equilibrium systems and experiments with ultracold atoms. They also
discuss frictional effects on moving atoms in blackbody fields and near surfaces.
De Kieviet, Jentschura, and Lach review the experimental status of the Casimir-
Polder force. They discuss other effects that might play a role in future experi-
ments and review their work on the quantum reflection of ground-state atoms from
solid surfaces and on the atomic beam spin echo technique. They present new
experimental data on the reflectivity of 3He atoms from a gold surface and com-
pare the data with predictions of the Casimir-Polder and non-retarded van der
Waals atom-surface interactions. Their approach makes it possible to resolve very
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detailed features of the atom-surface potential. Finally Dalvit, Maia Neto, and
Mazzitelli review the theory of dynamical Casimir effects as well as frictional
forces associated with electromagnetic field fluctuations, and discuss possible
experimental scenarios for the observation of such effects.
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Chapter 2
On the Problem of van der Waals Forces
in Dielectric Media

Lev P. Pitaevskii

Abstract A short review of the problems which arise in the generalization of the
Lifshitz theory of van der Waals force in the case of forces inside dielectric media
is presented, together with some historical remarks. General properties of the stress
tensor of equilibrium electromagnetic field in media are discussed, and the
importance of the conditions of mechanical equilibrium is stressed. The physical
meaning of the repulsive van der Waals interaction between bodies immersed in a
liquid is discussed.

2.1 Introduction

The quantum theory of the long range van der Waals interaction between neutral
objects has a long and instructive history [1]. The existence of attractive forces
between atoms was established by van der Waals on the basis of analysis of
experimental data on equations of state of real gases.

It was F. London who understood the electric nature of these forces and built in
1930 a seminal quantum-mechanical theory of the forces at large distances,
deriving the famous 1=R6 law for the energy of interaction [2].

The next important step was performed by Casimir and Polder. Using quantum
electrodynamics, they derived a more general expression for the energy of the
atom-atom interaction and showed that, due to retardation effects, London’s law at
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large distances is changed to a 1=R7 law [3]. In the same paper the authors
considered for the first time the problem of including a macroscopic body. They
calculated a force between an atom and perfect metal plate. The interaction
between perfect metal plates was calculated by Casimir [4].

The most general theory of the van der Waals interaction between any con-
densed bodies was developed by E. Lifshitz in 1954–1955 [5, 6]. His theory is
applicable to a body with arbitrary dielectric properties at any temperature. It also
automatically takes into account relativistic retardation effects. To calculate forces
one must know the dielectric and magnetic permeabilities of the bodies and solve
the Maxwell equations for their given configuration.

It was assumed in the Lifshitz theory (as well as in previous theories) that the
space between the bodies was a vacuum. A generalization of the theory where the
gap between bodies is filled with some medium was a natural next step. However,
to make this step one must overcome some essential difficulties. To clarify the
nature of these difficulties, let us recall the main points of the Lifshitz approach.
This approach is based on averaging of the Maxwell stress tensor in vacuum,

rðvacÞ
ik ¼ EiEk þ BiBk

4p
� E2 þ B2

8p
dik : ð2:1Þ

with respect to electromagnetic fluctuations in thermodynamic equilibrium.
Because the theory of equilibrium electromagnetic fluctuations in arbitrary

media was already developed by Rytov [7] and Landau and Lifshitz [8], the tensor
could be averaged for equilibrium conditions and the forces calculated.

The Rytov theory has a semi-phenomenological character. Rytov considered
the fluctuations as created by the Langevin-like sources, namely fluctuating
electric and magnetic polarizations. It was assumed that these polarizations at two
points r1 and r2 of a medium are correlated only when the two points coincide,
i.e., their correlation functions are proportional to dðr1 � r2Þ. The coefficients of
proportionality were chosen to obtain the correct density of black-body radiation
from the bodies. During preparation of the book [8], Landau and Lifshitz derived
equations of the Rytov theory using the exact fluctuation-dissipation theorem,
established by Callen and Welton in 1951.

It was natural to think that the generalization for the case of bodies separated by
a medium could be obtained if one could find a general expression for the elec-
tromagnetic stress tensor for arbitrary time-dependent fields in a medium. Because
the Rytov theory describes electromagnetic fluctuations also inside a medium, it
would then be possible to perform the average of the tensor. Thus the first step was
to calculate the tensor. Note that this problem was formulated in the book [8], and
Landau believed that it could be solved. One can read in the end of Sect. 61:

‘‘Considerable interest attaches to the determination of the (time) average stress
tensor giving the forces on matter in a variable electromagnetic field. The problem
is meaningful for both absorbing and non absorbing media, whereas that con-
cerning the internal energy can be proposed only if absorption is neglected. The
corresponding formulae, however, have not yet been derived.’’
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I had an opportunity to read proofs of the book when I joined the Landau
department in the Institute for Physical Problems in Moscow as a Ph.D. student in
1955. After reading this paragraph I decided to derive ‘‘the corresponding for-
mulae’’ for the tensor. It was, of course, a quite ambitious goal. After approxi-
mately three months of work I met Igor Dzyaloshinskii. Because the authors asked
both him and me to help in the proof-reading of Ref. [8], we naturally discussed
the topics of the book and I discovered that Dzyaloshinskii had also been working
on the tensor problem even longer than I. We decided to join our efforts.

Our attempts were based on the use of the second-order quantum mechanical
perturbation theory to calculate the quadratic contribution of the fields into the
tensor. One can obtain formal equations; however, for a medium with dissipation
we could not express them in terms of dielectric and magnetic permeabilities.
Oddly enough, one could easily obtain an equation for the total force acting on a
body in vacuum. However, trying to obtain from this equation the force density
inside the body, one necessarily violated the condition of the symmetry of the
stress tensor, or other conditions implied for the tensor. We also tried to develop a
thermodynamic approach. However, the entropy increase due to the dissipation
makes this approach meaningless.

We worked long enough and finally decided that the problem was hopeless. (In
any case it was my opinion.)

However, after a period of disappointment, I suddenly recognized that the
problem of the van der Waals forces for the case of a liquid film can be solved
without involving the general tensor problem. Because, as we will see below, these
considerations actually were not employed and never were published, I would like
to present them here.

Let us consider a liquid film of thickness d in vacuum. Its free energy per unit of
area can be presented in the form

FðT ; dÞ ¼ u0ðTÞd þFðelmÞðT; dÞ ð2:2Þ

where u0ðTÞ is the density of free energy for a bulk body and FðelmÞðT ; dÞ is the
contribution of the van der Waals forces, which can be normalized in such a way

that FðelmÞ ! 0 at d !1. The goal of the theory in this case is to calculate
FðelmÞðT ; dÞ. However, this quantity can be calculated on the basis of the Lifshitz
theory. Let us consider our film at the distance l from a half-space of the same
liquid (see Fig. 2.1). The theory permits the calculation of the force F(d,l) between
the film and the half-space and the change of the free energy when the film moves
from the surface of the bulk liquid to infinity:

DFðT; dÞ ¼
Z1

0

Fdl: ð2:3Þ

This quantity is just FðelmÞðT; dÞ. Indeed, if the film is near the surface of the
half space, the configuration corresponds to a bulk body. Actually, the integral
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(2.3) is divergent at small l. However, this infinite contribution does not depend on
d and can be omitted altogether with a d-independent constant.

We discussed the idea with Landau and he agreed with the argumentation. We
immediately began calculations of the force F for the three-boundary configuration
of Fig. 2.1. E. M. Lifshitz, who was interested in the film problem very much,
joined us. However, Landau cooled our ardor. He said that it is meaningless to
solve a three boundary problem to find an answer for a two-boundary one and that
the integration (2.3) must be performed in a general form, ‘‘in some symbolic
way’’ as he said.

As a result, Dzyaloshinskii and I began to look for a different approach, being
sure this time that the answer exists. It was a lucky coincidence that just in this
period Dzyaloshinskii, in collaboration with Abrikosov and Gorkov, worked on
developing the Matsubara diagram technique for the solution of equilibrium
problems in the quantum many-body theory. We decided to try this approach. The
first attempt was very successful. We immediately recognized which diagrams are
important. As an intermediate result we obtained an equation where the van der
Waals contribution to the free energy was expressed in terms of an integration with
respect to the charge of the electron. This equation was correct, but not very useful
because the dielectric permeability can, of course, be measured only for the actual
value of the charge. Finally, however, we discovered that in the Matsubara tech-
nique the variation of the free energy with respect to the dielectric permeability
can be expressed in terms of the Matsubara Green’s function of imaginary fre-
quency. This permitted us to calculate the tensor explicitly [9].

The reason why our previous attempts were in vain became clear now. One can
obtain the tensor of the equilibrium electromagnetic field in a medium, that is, the
tensor of van der Waals forces, but not the tensor of arbitrary electromagnetic
fields. The possibility to derive the tensor of the equilibrium fluctuation electro-
magnetic field in an absorbing medium does not mean, of course, the possibility to
determine the tensor for an arbitrary variable field. Even if this quantity has
physical meaning, according to the Landau conjecture quoted above, it does not
mean that it can be expressed in terms of the electric and magnetic permeabilities
eðxÞ and lðxÞ. I believe that this is impossible. In any case, the tensor, obtained by
direct calculation for a plasma, where the problem can be explicitly solved using
the Boltzmann kinetic equation, cannot be expressed in such a way [10].

Fig. 2.1 Scheme for
calculation of the chemical
potential of a film in terms of
the stress tensor in vacuum
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The difficulty, of course, is the energy dissipation. In a transparent medium, where
dissipation is absent, the tensor can be obtained for arbitrary non-equilibrium
fields [11].

Before discussing concrete results, let us discuss general properties of the stress
tensor in thermal equilibrium. It can be presented in the form

rik ¼ �P0ðT ; qÞdik þ rðelmÞ
ik ; ð2:4Þ

where P0ðT ; qÞ can be defined as the pressure of a uniform infinite liquid at given

density q and temperature T and rðelmÞ
ik is the contribution from the electromagnetic

fluctuations, i.e., the van der Waals interaction. This contribution must satisfy
several important conditions:

1. The tensor must be symmetric: rðelmÞ
ik ¼ rðelmÞ

ki :
2. The van der Waals part of the force, acting on the liquid, must be derivable

from a potential:

FðelmÞ
i ¼ okr

ðelmÞ
ik ¼ �qoif

ðelmÞ: ð2:5Þ

Actually fðelmÞ is just the contribution of the van der Waals interaction to the
chemical potential of the fluid. The first condition is a direct consequence of the
symmetry of the microscopic energy-momentum tensor. The tensor ð�rikÞ is its
averaged spatial part. Condition 2 ensures the possibility of mechanical equilib-
rium of the fluid in the presence of the van der Waals interaction. Indeed, the
condition for such an equilibrium is Fi ¼ okrik ¼ 0. Taking into account that
dP0 ¼ qdf0ðq; tÞ, we can rewrite this equation as

oif0 � FðelmÞ
i =q ¼ 0: ð2:6Þ

which implies (2.4) for arbitrary configurations of interactive bodies. Thus vio-
lation of the condition 2 would result in permanent flow of the liquid in equilib-
rium and actually would permit us to build the notorious Perpetual Motion
machine.

For an analogous reason, on the boundary between a fluid and a solid the
tangential components of the tensor must be continuous. This condition is satisfied
automatically by virtue of the boundary conditions for the fluctuating fields. If the

normal to the surface is directed along z, it must be the case that relmð1Þ
az ¼

relmð2Þ
az ; a ¼ x; y: Violation of this condition would result in the existence of per-

manent flow of the liquid near a solid boundary.
Equation (2.6) can be written as a condition of constancy of the total chemical

potential f:

fðq; TÞ ¼ f0ðq; tÞ þ fðelmÞðq; TÞ ¼ const: ð2:7Þ

Notice that, neglecting the change in density of the liquid under the influence of
the van der Waals forces, one can express this condition also as
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P0ðq; TÞ=qþ fðelmÞ ¼ const: ð2:8Þ

For calculations of the forces in the state of mechanical equilibrium one can
omit this part of the tensor and exclude the pressure, i.e., use instead of (2.4) the
tensor

r0ik ¼ rðelmÞ
ik þ qfðelmÞðT ; qÞdik: ð2:9Þ

Notice that the tensor r0ik by definition satisfies the equation

okr
0
ik ¼ 0: ð2:10Þ

This obvious property results sometimes in misunderstandings (Ref. [12]).

2.2 Free Energy of the Equilibrium Electromagnetic Field
in an Absorbing Medium

I present now a simplified version of our deviation of the force tensor in a liquid
obtained for the first time in [9]. It is sufficient to take into account only the
electromagnetic interaction in the system. Nuclear forces are obviously irrelevant
to our problem. Then the correction due to interaction to the free energy can be
presented in the Matsubara technique as a set of ‘‘ring’’ diagrams (see Fig. 2.2)
where the dashed lines represent the Matsubara Green’s functions of the electro-
magnetic field D0 without interaction [13]. Every ‘‘bead’’ is the polarization
operator P, which includes all diagrams which cannot be separated into parts,
connected by one dashed line. It is important that the diagrams of Fig. 2.2 cannot
be summed up into the exact Green’s function, because of the extra factor 1=n in
each term, where n is the number of the ’’beads’’.

Let us calculate now the variation of the free energy with respect to a small
change dP of the density of the liquid. The crucial point is that the factor 1=n will
be canceled as a result of the variation and the parts of the diagrams with the non-
variated beads will be summed up to the exact Green’s function. The result is

dF ¼ dF0 �
X1
s¼0

0
Z

Dikðr; r0; nsÞdPikðr; r0; nsÞdrdr0; ð2:11Þ

where ns ¼ 2spT and the term with s ¼ 0 is taken with a factor (1/2) [14]. This is
an exact equation of quantum electrodynamics. It is valid also in a vacuum, where

Fig. 2.2 Diagrammatic
representation of corrections
to the free energy
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P describes the radiation correction to D. However, it is practically worthless,
because explicit expressions for D and P cannot be obtained. It also contains
ultraviolet divergences. However, these divergences are due to contributions from
the short wave-length fluctuations, whereas we are interested in effects due to the
inhomogeneity of the medium. i.e., the presence of boundaries of bodies etc. This
permits us to produce a renormalization of this equation. To do this, let us write the
D-function as

Dikðr; r0; nsÞ ¼ Dikðr; r0; nsÞ � �Dikðr; r0; nsÞ½ � þ �Dikðr; r0; nsÞ; ð2:12Þ

where �Dikðr; r0; nsÞ is the Green’s function of an auxiliary homogeneous infinite
medium whose permeabilities are the same as that of the actual medium at the
point r0. After substitution into (2.11) the third term can be absorbed in the term
dF0. This term acquires the meaning of the variation of the free energy of this
uniform medium.

dF ¼ dF0 �
X1
s¼0

0
Z

Dikðr; r0; nsÞ � �Dikðr; r0; nsÞ½ �dPikðr; r0; nsÞdrdr0: ð2:13Þ

In (2.13) the important fluctuations are those whose wavelengths are of the
same order of magnitude as the inhomogeneities of the system (e.g., the thickness
of films and separations of bodies). These lengths are assumed to be large com-
pared to interatomic dimensions. However, these long-wavelength fluctuations can
be described by macroscopic electrodynamics. According to the general theory,
the Matsubara Green’s function Dikðr; r0; nsÞ ¼ DR

ikðr; r0; insÞ, where DR is the
‘‘usual’’ retarded Green’s function for the vector-potential of the electromagnetic
field. Accordingly, D satisfies in the macroscopic limit the explicit equation

oiol � dilDþ ðn2
s=c2Þeðijnsj; rÞdil

� �
Dikðr; r0; jnsjÞ ¼ �4p�hdikdðr� r0Þ: ð2:14Þ

The equation for �D can be obtained by changing in (2.14) the permeability
eðijnsj; rÞ to eðijnsj; r0Þ. However, in the majority of practical problems the
excluding of the divergences can be achieved simply by omitting terms which do
not depend on the spatial parameters, e.g., on the distances between bodies. Taking
this into account, and to avoid complications of the equations, we will denote in the
future the difference (2.12) as D. It is worth noting that the left-hand side of (2.14)
coincides with the Maxwell equations for the vector potential A of the electro-
magnetic field with the frequency ins in the gauge where the scalar potential / ¼ 0.
The final results of the theory do not depend, of course, on the gauge. The Green’s
function D0 satisfies the same (2.14) with e ¼ 1. Let us write (2.14) symbolically

as D̂�1D ¼ dildðr� r0Þ and the equation for D0 as D̂�1
0 D0 ¼ dildðr� r0Þ. Then

from the definition Pik ¼ D�1
0ik �D�1

ik

� �
we find an equation for P:

Pklðns; r1; r2Þ ¼
n2

s

4p
dkldðr� r0Þ eðijnsj; r1Þ � 1½ �: ð2:15Þ
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This permits us to express the variation of the free energy in terms of e:

dF ¼ dF0 �
T

4p

X1
s¼0

0
Z

n2
sDllðr; r; nsÞ

� �
deðins; rÞdr: ð2:16Þ

It is convenient for further equations to introduce a new function

DE
ikðr; r0; nsÞ ¼ �n2

sDikðr; r0; nsÞ: ð2:17Þ

Function D describes the quadratic fluctuations of the vector potential in the
Matsubara technique. Accordingly, the function DE describes fluctuations of the
electric field. We will also use the function

DH
ikðr; r0; nsÞ ¼ curlilcurl0kmDlmðr; r0; nsÞ ð2:18Þ

describing fluctuations of the magnetic field. Now we can rewrite (2.16) as

dF ¼ dF0 þ
T

4p

X1
s¼0

0
Z

DE
llðr; r; nsÞdeðins; rÞdr: ð2:19Þ

2.3 Stress Tensor of the van der Waals Interaction Inside
an Absorbing Medium

We can use (2.19) to calculate the tensor of van der Waals forces in a fluid. It is
instructive, however, as a first step to compare the equation for a free energy
variation for given sources of field in a dielectric in the absence of dispersion (Ref.
[8], (15.19)):

dF ¼ dF0 �
Z

E2

8p
dedr ð2:20Þ

This equation permits the calculation of the force f and finally to find the stress
tensor (see Ref. [8], (15.9) and (35.2), in the presence of both electric and magnetic
fields we must take the sum of these equations):

rA
ik ¼ �P0dik þ

eEiEk þ HiHk

4p
� E2

8p
e� q

oe
oq

� �
T

� �
dik �

H2

8p
dik: ð2:21Þ

This equation was derived by M. Abraham around 1909 and is one of the most
important results of the electrodynamics of continuous media.

Now we can write the tensor of the van der Waals forces by direct analogy with
(2.21). Indeed, the functions DE

ikðr; r0; nsÞ and DH
ikðr; r0; nsÞ satisfy equations which

are similar to the products EiðrÞEkðr0Þ and HiðrÞHkðr0Þ. The presence of the d-
function term on the right-hand side of (2.14) is not important because this term in
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any case will be eliminated in the course of the renormalization. Thus, the general
expression for the stress tensor for a fluid with l ¼ 1 is [9]:

rik ¼ �P0dik �
�hT

2p

nX1
s¼0

0
�
eDE

ik þ DH
ik �

1
2

DE
ii

h
e� q

� oe
oq

	
T

i
dik �

1
2

DH
ii dik

	o
;

ð2:22Þ

where DE
ik and DH

ik were defined above, e ¼ e q; T; ifnð Þ; fn ¼ 2nT=�h, and P0 q; Tð Þ
is the pressure as a function of density and temperature in the absence of an
electric field.

Equation (2.22) assumes the system to be in thermal, but still not in mechanical
equilibrium. As was said before, the last condition can be formulated as a con-
dition of the constancy of the chemical potential f, which can be defined by the
equation dF ¼

R
fdqdr. The variation must be taken at fixed boundaries of the

bodies. One has from (2.19)

fðq; TÞ ¼ f0ðq; TÞ þ
�hT

4p

X1
s¼0

0DE
llðr; r; nsÞ

oeðins; rÞ
oq

: ð2:23Þ

The condition of mechanical equilibrium means that fðq; TÞ ¼ const. Let the
fluid have uniform density in the absence of the van der Waals forces. Taking into
account that dP0 ¼ qdf0 and neglecting in the second term any change of q due
the van der Waals interaction, we can rewrite the condition of equilibrium as:

P0 þ
�hT

4p

X
s

0DE
iiq

oe
oq

� �
T

¼ const: ð2:24Þ

This equation can be used to calculate the perturbation dq of the density of the
liquid due to the van der Waals forces. Expanding the first term with respect to dq,
we easily find

dq ¼ � �hT

4p

X
s

0DE
iiq

oe
oP

� �
T

: ð2:25Þ

Equation (2.24) implies that a part of the stress tensor (2.22) is constant through
the fluid, being a uniform compressing or expanding pressure. This part can be
omitted in many problems, for example in the calculation of the full force acting
on a body embedded in the fluid. Subtracting the constant tensor

�P0 � �hT
4p

P
n

DE
iiq

oe
oq

� 	
T

� �
dik from (2.22) one arrives to the ‘‘contracted’’ tensor,

which was obtained for the first time in [15] (see also Ref. [16]):

r0ik ¼ �
�hT

2p

X
s

0 eDE
ik þDH

ik �
1
2
eDE

iidik �
1
2
DE

iidik

� �( )
: ð2:26Þ
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I would like to stress that the ‘‘P0’’ term in the tensor (2.22) plays an important
role. Ignoring this term would lead to wrong results. In this connection it is
appropriate to quote Landau and Lifshitz’s remark (see Ref. [8], Sect. 15): ‘‘The
problem of calculating the forces (called pondermotive forces) which act on a
dielectric in an arbitrary non-uniform electric field is fairly complicated…’’

Notice that or0ik=oxk ¼ 0 and hence
H

r0ikdSk ¼ 0 for integration over any closed
surface, surrounding a volume of a uniform fluid, just due to the fact that in
mechanical equilibrium electromagnetic forces are compensated by a pressure
gradient. Analogous integration over any surface surrounding a solid body gives
the total force acting on the body.

Equivalent theories of the force between bodies separated by a liquid were
developed by Barash and Ginzburg [17] and Schwinger, DeRead and Milton [18].
The method of [17] is based on a very interesting and new physical idea. I cannot
discuss it here. Notice only, that the method permits us to calculate forces on the
basis of the solution of the imaginary frequencies ‘‘dispersion relation’’
D�1ðinsÞ ¼ 0, without an actual calculation of D. This results in further simpli-
fication of calculations. The authors of [18] performed the free energy variation
assuming actually the condition of the mechanical equilibrium from the very
beginning and obtained directly (2.26).

2.4 Van der Waals Forces Between Bodies Separated by a Liquid

Now we can calculate the force acting on bodies separated by a dielectric liquid. It
is worth noticing, however, that even for bodies in vacuum the method, based on
using the imaginary-frequencies Green’s functions, involves simpler calculations
than the original Lifshitz method, because the solution of the equation for the
Green’s functions is simpler than the procedure of averaging of the stress tensor.

It was shown in [15] that if the problem has been solved for bodies in a vacuum,
the answer for bodies in liquid can be found by a simple scaling transformation.
Let us denote the dielectric permeability of the liquid as e. If we perform a
coordinate transformation r ¼ ~r=e1=2 and introduce the new functions Dik ¼
~Dik=e1=2 and DE

ik ¼ ~DE
ike

1=2, DH
ik ¼ ~DH

ike
3=2, then

r0ik ¼ �
�hT

2p

X1
s¼0

0e3=2 ~DE
ik þ ~DH

ik �
1
2

~DE
iidik �

1
2

~DE
iidik

� �( )
: ð2:27Þ

One can see easily that the new functions ~Dik satisfy in the new coordinates ~r
equations of the same form (2.14) for bodies in vacuum, while the permeabilities
ea of the bodies were changed to ea=e.

One can usually neglect the influence of the temperature on the forces between
bodies in a liquid. Then one can change T

P1
s¼0
0. . .! �h

2p

R1
0 . . .dns. We will
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consider below only this case. We also will consider only the small ‘‘London’’
distances where the characteristic distance between bodies l� k, where k is the
characteristic wavelength of the absorption spectra of the media. In this case one
can neglect the magnetic Green’s function DH

ik and the electric function can be
presented as DE

ik ¼ �hoio
0
k/, where the ‘‘electrostatic’’ Green’s function / satisfies

[19, 20]

oi½eðin; rÞoi/ðn; r; r0Þ� ¼ �4pdðr� r0Þ: ð2:28Þ

Thus / is just the potential of a unit charge placed at point r0. We will present
here results for two important problems.

2.4.1 Interaction of a Small Sphere with a Plane Body

As a first example we consider a dielectric sphere in the vicinity of a plane surface
of a bulk body. Let the radius R of the sphere be small in comparison with the
distance l between the sphere and the surface. We consider first the problem in
vacuum. Then the energy of interaction can be obtained directly from (2.19),
taking into account that the change of the dielectric permeability due to the
presence of the sphere at point r0 is deðxÞ ¼ 4paðxÞdðr� r0Þ, where aðxÞ is the
polarizability of the sphere. In the zero-temperature London regime we get

VðlÞ ¼ �h

2p

Z1

0

aðinÞ DE
llðn; r; r0Þ

� �
r!r!r0

dn: ð2:29Þ

The ‘‘potential’’ / can be taken from [8], Sect. 7, Problem 1. A simple cal-
culation then gives

DE
llðn; r0; r0Þ ¼ �

�h

2l3

e1ðinÞ � 1
e1ðinÞ þ 1

: ð2:30Þ

Taking into account that

aðinÞ ¼ R3 e2ðinÞ � 1
e2ðinÞ þ 2

; ð2:31Þ

we find

VðlÞ ¼ � �hR3

4pl3

Z1

0

ðe2ðinÞ � 1Þðe1ðinÞ � 1Þ
ðe2ðinÞ þ 2Þðe1ðinÞ þ 1Þ dn: ð2:32Þ

The force acting on the sphere is

FðlÞ ¼ � dV

dl
¼ � 3�hR3

4pl4

Z1

0

ðe2ðinÞ � 1Þðe1ðinÞ � 1Þ
ðe2ðinÞ þ 2Þðe1ðinÞ þ 1Þ dn: ð2:33Þ
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One must be careful when rewriting this equation for a case of bodies separated
by liquid. The transformation was formulated for the tensor r0. Taking into
account that F ¼

R
r0zzdxdy, we conclude that it is enough to change e1 ! e1=e and

e2 ! e2=e:

FðlÞ ¼ 3�hR3

4pl4

Z1

0

ðe2ðinÞ � eðinÞÞðe1ðinÞ � eðinÞÞ
ðe2ðinÞ þ eðinÞÞðe1ðinÞ þ eðinÞÞ dn: ð2:34Þ

2.4.2 Interaction Between Two Parallel Plates

Let us consider now the force between solid bodies 1 and 2 separated by very
small distances. It should be noted that, for a rigorous statement of the problem, it
is necessary to consider at least one of the bodies as being of finite size and
surrounded by the liquid. Then Fi ¼

H
r0ikdSk is the total force acting on the body.

However, since the van der Waals forces decrease very quickly with distance, the
integrand is actually different from zero only inside the gap and the force can be
calculated as F ¼ Fz ¼

R
r0zzdxdy. Notice that, due to (2.10), the quantity r0zz does

not depend on z. Finally the force per unit area can be expressed as [15]

F ¼ �h

16pl3

Z1

0

Z1

0

x2 ðe1 þ eÞðe2 þ eÞ
ðe1 � eÞðe1 � eÞ e

x � 1

� �
dxdn ð2:35Þ

where the dielectric permeabilities must be taken as functions of the imaginary
frequency in.

2.5 Remarks about Repulsive Interactions

It is well known that forces between bodies in vacuum are attractive. In the cases
considered in the previous section it is obvious, because for any body eðinÞ[ 1 for
n[ 0. It also follows from (2.34) and (2.35) that forces are attractive for bodies of
the same media (e1 ¼ e2).

If, however, the bodies are different, the force can be either attractive or
repulsive. It is clear from (2.34) and (2.35) that if the differences e1 � e and e2 � e
have different signs in the essential region of values n, we have F\0, that is, the
bodies repel one another.

To understand better the physical meaning of this repulsion, let us consider the
problem of the body-sphere interaction and assume that the materials of both the
sphere and the liquid (but not the body) are optically rarefied, i.e., that e2 � 1� 1
and e� 1� 1. Then (2.34) can be simplified as
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FðlÞ � 3�hR3

8pl4

Z1

0

ðe2ðinÞ � 1Þ
ðe2ðinÞ þ 1Þ ðe1ðinÞ � eðinÞÞdn: ð2:36Þ

The force is now expressed as a difference of two terms, with clear physical
meaning. The first term is the force that acts on the sphere in vacuum. The second
term is the force that would act in vacuum on an identical sphere, but with optical
properties of the liquid. This second term is an exact analogy of the Archimedes’
buoyant force, which acts on a body embedded in a liquid in a gravitational field.
This remark again stresses the importance of the condition of the mechanical
equilibrium in the liquid. Of course, such a simple interpretation is possible only in
the limit of rarefied media.

The existence of the repulsive van der Waals forces, predicted in [15] was
confirmed in several experiments (see [21, 22] and references therein). See also the
Chap. 8 by Capasso et al. in this volume. Corresponding experiments are, how-
ever, quite difficult. Forces at large distances are quite small, while at small
distances the atomic structure of the media becomes essential.

2.6 Liquid Films

The van der Waals forces play an important part in the physics of surface phe-
nomena, and in the properties of thin films in particular. A fundamental problem
here is the dependence of the chemical potential f on the thickness d of a film. For
example, the thickness of a film on a solid surface in equilibrium with the vapour
at pressure P is given by the equation

fðP; dÞ ¼ f0ðPÞ þ
T

m
ln

P

Psat
: ð2:37Þ

If the thickness d of the film is large compared to interatomic distances, this
dependence is defined mainly by the van der Waals forces. Actually the contri-
bution of these forces to the chemical potential is given by the general (2.23).
However, this equation cannot be used directly, because it gives the chemical
potential f in terms of the density q, while (2.37) requires f as a function of the
pressure P.

According to the conditions of mechanical equilibrium, the normal component
rzz of the stress tensor must be continuous at the surface of the film:
�P0ðq; TÞ þ rðelmÞ

zz ¼ �P. Then qðP0Þ ¼ qðPþ rðelmÞ
zz Þ � qðPÞ þ ðoqÞ=oPÞrðelmÞ

zz

and f0ðqÞ � f0ðPÞ þ ðof=oqÞðoq=oPÞrðelmÞ
zz ¼ f0ðPÞ þ rðelmÞ

zz =q, where we took
into account that ðof=oqÞ ¼ 1=q. Thus we have

fðP; dÞ ¼ f0ðPÞ þ rðelmÞ
zz =qþ �hT

4p

X1
s¼0

0DE
llðr; r; nsÞ

oeðins; rÞ
oq

¼ f0ðPÞ þ r0zz=q ¼ f0ðPÞ þ FðdÞ=q; ð2:38Þ
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where F(d) is the force, which in the London regime is given by (2.35) with
e2 ¼ 1; l! d. (As far as electromagnetic properties of the vapour are concerned,
we can treat it as a vacuum.) One can now rewrite (2.37) in the form

FðdÞ ¼ � T

m
ln

P

Psat
: ð2:39Þ

If the film is placed on a solid wall situated vertically in the gravitational field,
the dependence of the film thickness on the altitude is given by the equation

FðdÞ ¼ qgx; ð2:40Þ

where x is the height.
In conclusion, let us consider a ‘‘free’’ film in vacuum. Then the chemical

potential can be written as

fðP; T; dÞ ¼ f0ðP; TÞ þ FðdÞ=q ð2:41Þ

where F can be obtained from (2.35) with e1 ¼ e2 ¼ 1; l! d:

F ¼ �h

16pd3

Z1

0

Z1

0

x2 ð1þ eÞ2

ð1� eÞ2
ex � 1

" #
dxdn: ð2:42Þ

Note that this is just the quantity which can be calculated by integration of the
force in the three-boundary geometry of Fig. 2.1 However, these calculations have
never been performed, and the correctness of the corresponding considerations has
not been proved [23].
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Chapter 3
Local and Global Casimir Energies:
Divergences, Renormalization,
and the Coupling to Gravity

Kimball A. Milton

Abstract From the beginning of the subject, calculations of quantum vacuum
energies or Casimir energies have been plagued with two types of divergences:
The total energy, which may be thought of as some sort of regularization of the
zero-point energy,

P
1
2 �hx; seems manifestly divergent. And local energy densi-

ties, obtained from the vacuum expectation value of the energy-momentum tensor,
hT00i; typically diverge near boundaries. These two types of divergences have little
to do with each other. The energy of interaction between distinct rigid bodies of
whatever type is finite, corresponding to observable forces and torques between the
bodies, which can be unambiguously calculated. The divergent local energy
densities near surfaces do not change when the relative position of the rigid bodies
is altered. The self-energy of a body is less well-defined, and suffers divergences
which may or may not be removable. Some examples where a unique total self-
stress may be evaluated include the perfectly conducting spherical shell first
considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric
balls and cylinders. In these cases the finite part is unique, yet there are divergent
contributions which may be subsumed in some sort of renormalization of physical
parameters. The finiteness of self-energies is separate from the issue of the
physical observability of the effect. The divergences that occur in the local energy-
momentum tensor near surfaces are distinct from the divergences in the total
energy, which are often associated with energy located exactly on the surfaces.
However, the local energy-momentum tensor couples to gravity, so what is the
significance of infinite quantities here? For the classic situation of parallel plates
there are indications that the divergences in the local energy density are consistent
with divergences in Einstein’s equations; correspondingly, it has been shown that
divergences in the total Casimir energy serve to precisely renormalize the masses
of the plates, in accordance with the equivalence principle. This should be a
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general property, but has not yet been established, for example, for the Boyer
sphere. It is known that such local divergences can have no effect on macroscopic
causality.

3.1 Introduction

For more than 60 years it has been appreciated that quantum fluctuations can give
rise to macroscopic forces between bodies [1]. These can be thought of as the
sum, in general nonlinear, of the van der Waals forces between the constituents of
the bodies, which, in the 1930s had been shown by London [2] to arise from
dipole-dipole interactions in the nonretarded regime, and in 1947 to arise from the
same interactions in the retarded regime, giving rise to so-called Casimir-Polder
forces [3]. Bohr [4] apparently provided the incentive to Casimir to rederive the
macroscopic force between a molecule and a surface, and then derive the force
between two conducting surfaces, directly in terms of zero-point fluctuations of
the electromagnetic fields in which the bodies are immersed. But these two points
of view—action at a distance and local action—are essentially equivalent, and one
implies the other, not withstanding some objections to the latter [5].

The quantum-vacuum-fluctuation force between two parallel surfaces—be they
conductors or dielectrics [6–8] —was the first situation considered, and still the
only one accessible experimentally. (For a current review of the experimental
situation, see the chapters by Lamoreaux, Capasso et al., Decca et al., Van Zwol
et al., and De Kieviet et al. in this volume, and also [9, 10]) Actually, most
experiments measure the force between a spherical surface and a plane, but the
surfaces are so close together that the force may be obtained from the parallel plate
case by a geometrical transformation, the so-called proximity force approximation
(PFA) [11–13]. However, it is not possible to find an extension to the PFA beyond
the first approximation of the separation distance being smaller than all other
scales in the problem. In the last few years, advances in technique have allowed
quasi-analytical and numerical calculations to be carried out between bodies of
essentially any shape, at least at medium to large separation, so the limitations of
the PFA may be largely transcended. (See also the chapters by Rahi et al., by
Johnson and by Lambrecht et al. in this volume for additional discussions about
advances in numerical and analytical calculations. For earlier references, see, for
example [14].) These advances have shifted calculational attention away from
what used to be the central challenge in Casimir theory, how to define and cal-
culate Casimir energies and self-stresses of single bodies.

There are, of course, sound reasons for this. Forces between distinct bodies are
necessarily physically finite, and can, and have, been observed by experiment.
Self-energies or self-stresses typically involve divergent quantities which are
difficult to remove, and have obscure physical meaning. For example, the self-
stress on a perfectly conducting spherical shell of negligible thickness was
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calculated by Boyer in 1968 [15], who found a repulsive self-stress that has subse-
quently been confirmed by a variety of techniques. Yet it remains unclear what
physical significance this energy has. If the sphere is bisected and the two halves
pulled apart, there will be an attraction (due to the closest parts of the hemispheres)
not a repulsion. The same remarks, although exacerbated, apply to the self-stress on a
rectangular box [16–19].The situation in that case is worse because (3.1) the sharp
corners give rise to additional divergences not present in the case of a smooth
boundary (it has been proven that the self-energy of a smooth closed infinitesimally
thin conducting surface is finite [20, 21]), and (3.2) the exterior contributions cannot
be computed because the vector Helmholtz equation cannot be separated. But cal-
culational challenges aside, the physical significance of self-energy remains elusive.

The exception to this objection is provided by gravity. Gravity couples to the
local energy-momentum or stress tensor, and, in the leading quantum approxi-
mation, it is the vacuum expectation value of the stress tensor that provides the
source term in Einstein’s equations. Self energies should therefore in principle be
observable. This is largely uncharted territory, except in the instance of the classic
situation of parallel plates. There, after a bit of initial confusion, it has now been
established that the divergent self-energies of each plate in a two-plate apparatus,
as well as the mutual Casimir energy due to both plates, gravitates according to the
equivalence principle, so that indeed it is consistent to absorb the divergent self-
energies of each plate into the gravitational and inertial mass of each [22, 23]. This
should be a universal feature.

In this paper, for pedagogical reasons, we will concentrate attention on the
Casimir effect due to massless scalar field fluctuations, where the potentials
are described by d-function potentials, so-called semitransparent boundaries. In the
limit as the coupling to these potentials becomes infinitely strong, this imposes
Dirichlet boundary conditions. At least in some cases, Neumann boundary con-
ditions can be achieved by the strong coupling limit of the derivative of d-function
potentials. So we can, for planes, spheres, and circular cylinders, recover in this
way the results for electromagnetic field fluctuations imposed by perfectly con-
ducting boundaries. Since the mutual interaction between distinct semitransparent
bodies have been described in detail elsewhere [24–26], we will, as implied above,
concentrate on the self-interaction issues.

A summary of what is known for spheres and circular cylinders is given in
Table 3.1.

3.2 Casimir Effect Between Parallel Plates:
A d-Potential Derivation

In this section, we will rederive the classic Casimir result for the force between
parallel conducting plates [1]. Since the usual Green’s function derivation may be
found in monographs [38], and was for example reviewed in connection with
current controversies over finiteness of Casimir energies [36], we will here present
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a different approach, based on d-function potentials, which in the limit of strong
coupling reduce to the appropriate Dirichlet or Robin boundary conditions of a
perfectly conducting surface, as appropriate to TE and TM modes, respectively.
Such potentials were first considered by the Leipzig group [39, 40], but more
recently have been the focus of the program of the MIT group [41–44]. The
discussion here is based on a paper by the author [45]. (See also [46].) (A multiple
scattering approach to this problem has also been given in [25].)

We consider a massive scalar field (mass l) interacting with two d-function
potentials, one at x ¼ 0 and one at x ¼ a; which has an interaction Lagrange
density

Lint ¼ �
1
2
kdðxÞ/2ðxÞ � 1

2
k0dðx� aÞ/2ðxÞ; ð3:1Þ

where the positive coupling constants k and k0 have dimensions of mass. In the
limit as both couplings become infinite, these potentials enforce Dirichlet
boundary conditions at the two points:

k; k0 ! 1 : /ð0Þ;/ðaÞ ! 0: ð3:2Þ

The Casimir energy for this situation may be computed in terms of the Green’s
function G,

Gðx; x0Þ ¼ ihT/ðxÞ/ðx0Þi; ð3:3Þ

which has a time Fourier transform,

Gðx; x0Þ ¼
Z

dx
2p

e�ixðt�t0ÞGðx; x0; xÞ: ð3:4Þ

Table 3.1 Casimir energy (E) for a sphere and Casimir energy per unit length (E) for a cylinder,
both of radius a

Type ESpherea ECylindera2 References

EM þ0:04618 �0:01356 [15, 27]
D þ0:002817 þ0:0006148 [28, 29]

ðe� 1Þ2 þ0:004767 ¼ 23
1536p

0 [30, 31]

n2 þ0:04974 ¼ 5
32p

0 [32, 33]

de2 �0:0009 0 [34, 35]

k2=a2 þ0:009947 ¼ 1
32p

0 [36, 37]

Here the different boundary conditions are perfectly conducting for electromagnetic fields (EM),
Dirichlet for scalar fields (D), dilute dielectric for electromagnetic fields [coefficient of ðe� 1Þ2],
dilute dielectric for electromagnetic fields with media having the same speed of light (coefficient
of n2 ¼ ½ðe� 1Þ=ðeþ 1Þ�2), perfectly conducting surface with eccentricity de (coefficient of de2),
and weak coupling for scalar field with d-function boundary given by (3.60), (coefficient of
k2=a2). The references given are, to the author’s knowledge, the first paper in which the results in
the various cases were found
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Actually, this is a somewhat symbolic expression, for the Feynman Green’s
function (3.3) implies that the frequency contour of integration here must pass
below the singularities in x on the negative real axis, and above those on the
positive real axis [47, 48]. Because we have translational invariance in the two
directions parallel to the plates, we have a Fourier transform in those directions as
well:

Gðx; x0; xÞ ¼
Z ðdkÞ
ð2pÞ2

eik�ðr�r0Þ?gðx; x0; jÞ; ð3:5Þ

where j2 ¼ l2 þ k2 � x2:
The reduced Green’s function in (3.5) in turn satisfies

� o2

ox2
þ j2 þ kdðxÞ þ k0dðx� aÞ

� �
gðx; x0Þ ¼ dðx� x0Þ: ð3:6Þ

This equation is easily solved, with the result

gðx; x0Þ ¼ 1
2j

e�jjx�x0j þ 1
2jD

"
kk0

ð2jÞ2
2 cosh jjx� x0j

� k
2j

1þ k0

2j

� �
e2jae�jðxþx0Þ � k0

2j
1þ k

2j

� �
ejðxþx0Þ

#
ð3:7aÞ

for both fields inside, 0\x; x0\a, while if both field points are outside, a\x; x0,

gðx; x0Þ ¼ 1
2j

e�jjx�x0j þ 1
2jD

e�jðxþx0�2aÞ

� � k
2j

1� k0

2j

� �
� k0

2j
1þ k

2j

� �
e2ja

� �
:

ð3:7bÞ

For x; x0\0;

gðx; x0Þ ¼ 1
2j

e�jjx�x0 j þ 1
2jD

ejðxþx0Þ

� � k0

2j
1� k

2j

� �
� k

2j
1þ k0

2j

� �
e2ja

� �
: ð3:7cÞ

Here, the denominator is

D ¼ 1þ k
2j

� �
1þ k0

2j

� �
e2ja � kk0

ð2jÞ2
: ð3:8Þ

Note that in the strong coupling limit we recover the familiar results, for
example, inside
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k; k0 ! 1 : gðx; x0Þ ! � sinh jx\ sinh jðx [ � aÞ
j sinh ja

ð3:9Þ

Here x[ ; x\ denote the greater, lesser, of x; x0: Evidently, this Green’s function
vanishes at x ¼ 0 and at x ¼ a:

Let us henceforward consider l ¼ 0; since otherwise there are no long-range
forces. (There is no nonrelativistic Casimir effect—for example, see [38], p. 30.)
We can now calculate the force on one of the d-function plates by calculating
the discontinuity of the stress tensor, obtained from the Green’s function
(3.3) by

hTlmi ¼ olom0 � 1
2

glmoko0k

� �
1
i

Gðx; x0Þ
����
x¼x0

: ð3:10Þ

Writing a reduced stress tensor by

hTlmi ¼
Z

dx
2p

Z ðdkÞ
ð2pÞ2

tlm; ð3:11Þ

we find inside, just to the left of the plate at x ¼ a;

txx

��
x¼a� ¼

1
2i
ð�j2 þ oxox0 Þgðx; x0Þ

����
x¼x0¼a�

ð3:12aÞ

¼ � j
2i

1þ 2
kk0

ð2jÞ2
1
D

( )
: ð3:12bÞ

From this we must subtract the stress just to the right of the plate at x ¼ a;
obtained from (3.7b), which turns out to be in the massless limit

txx

��
x¼aþ ¼ �

j
2i
; ð3:13Þ

which just cancels the 1 in braces in (3.12b). Thus the pressure on the plate at
x ¼ a due to the quantum fluctuations in the scalar field is given by the simple,
finite expression

P ¼ hTxxi
��
x¼a� � hTxxi

��
x¼aþ

¼ � 1
32p2a4

Z1

0

dy y2 1

ðy=ðkaÞ þ 1Þðy=ðk0aÞ þ 1Þey � 1
; ð3:14Þ

which coincides with the result given in [44, 49]. The leading behavior for small
k ¼ k0 is

PTE� � k2

32p2a2
; k� 1; ð3:15aÞ
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while for large k it approaches half of Casimir’s result [1] for perfectly conducting
parallel plates,

PTE� � p2

480a4
; k	 1: ð3:15bÞ

We can also compute the energy density. Integrating the energy density over all
space should give rise to the total energy. Indeed, the above result may be easily
derived from the following expression for the total energy,

E ¼
Z
ðdrÞhT00i ¼ 1

2i

Z
ðdrÞðo0o00 �r2ÞGðx; x0Þ

����
x¼x0

¼ 1
2i

Z
ðdrÞ

Z
dx
2p

2x2Gðr; rÞ;
ð3:16Þ

if we integrate by parts and omit the surface term. Integrating over the Green’s
functions in the three regions, given by (3.7a–c), we obtain for k ¼ k0;

E ¼ 1
48p2a3

Z1

0

dy y2 1
1þ y=ðkaÞ �

1
96p2a3

Z1

0

dy y3 1þ 2=ðyþ kaÞ
ðy=ðkaÞ þ 1Þ2ey � 1

; ð3:17Þ

where the first term is regarded as an irrelevant constant (k is constant so the a can
be scaled out), and the second term coincides with the massless limit of the energy
first found by Bordag et al. [39], and given in [44, 49]. When differentiated with
respect to a, (3.17), with k fixed, yields the pressure (3.14). (We will see below that
the divergent constant describe the self-energies of the two plates.)

If, however, we integrate the interior and exterior energy density directly, one
gets a different result. The origin of this discrepancy with the naive energy is the
existence of a surface contribution to the energy. To see this, we must include the
potential in the stress tensor,

Tlm ¼ ol/om/� 1
2

glm ok/ok/þ V/2� �
; ð3:18Þ

and then, using the equation of motion, it is immediate to see that the energy
density is

T00 ¼ 1
2

o0/o0/� 1
2
/ðo0Þ2/þ 1

2
r � ð/r/Þ; ð3:19Þ

so, because the first two terms here yield the last form in (3.16), we conclude that
there is an additional contribution to the energy,

Ê ¼ � 1
2i

Z
dS � rGðx; x0Þ

����
x0¼x

ð3:20aÞ
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¼ � 1
2i

Z1

�1

dx
2p

Z ðdkÞ
ð2pÞ2

X d
dx

gðx; x0Þ
����
x0¼x

; ð3:20bÞ

where the derivative is taken at the boundaries (here x ¼ 0; a) in the sense of the
outward normal from the region in question. When this surface term is taken into
account the extra terms incorporated in (3.17) are supplied. The integrated formula
(3.16) automatically builds in this surface contribution, as the implicit surface term
in the integration by parts. That is,

E ¼
Z
ðdrÞhT00i þ Ê: ð3:21Þ

(These terms are slightly unfamiliar because they do not arise in cases
of Neumann or Dirichlet boundary conditions.) See Fulling [50] for further dis-
cussion. That the surface energy of an interface arises from the volume energy of a
smoothed interface is demonstrated in [45], and elaborated in Sect. 3.2.2

In the limit of strong coupling, we obtain

lim
k!1

E ¼ � p2

1440a3
; ð3:22Þ

which is exactly one-half the energy found by Casimir for perfectly conducting
plates [1]. Evidently, in this case, the TE modes (calculated here) and the TM
modes (calculated in the following subsection) give equal contributions.

3.2.1 TM Modes

To verify this last claim, we solve a similar problem with boundary conditions that
the derivative of g is continuous at x ¼ 0 and a,

o

ox
gðx; x0Þ

����
x¼0;a

is continuous; ð3:23aÞ

but the function itself is discontinuous,

gðx; x0Þ
����
x¼aþ

x¼a�
¼ k

o

ox
gðx; x0Þ

����
x¼a

; ð3:23bÞ

and similarly at x ¼ 0. (Here the coupling k has dimensions of length.) These
boundary conditions reduce, in the limit of strong coupling, to Neumann boundary
conditions on the planes, appropriate to electromagnetic TM modes:

k!1 :
o

ox
gðx; x0Þ

����
x¼0;a

¼ 0: ð3:23cÞ
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It is completely straightforward to work out the reduced Green’s function in this
case. When both points are between the planes, 0\x; x0\a;

gðx; x0Þ ¼ 1
2j

e�jjx�x0 j þ 1

2j~D

(
kj
2

� �2

2 cosh jðx� x0Þ

þ kj
2

1þ kj
2

� �
ejðxþx0Þ þ e�jðxþx0�2aÞ
h i)

; ð3:24aÞ

while if both points are outside the planes, a\x; x0;

gðx; x0Þ ¼ 1
2j

e�jjx�x0j

þ 1

2j~D

kj
2

e�jðxþx0�2aÞ 1� kj
2

� �
þ 1þ kj

2

� �
e2ja

� �
; ð3:24bÞ

where the denominator is

~D ¼ 1þ kj
2

� �2

e2ja � kj
2

� �2

: ð3:25Þ

It is easy to check that in the strong-coupling limit, the appropriate Neumann
boundary condition (3.23c) is recovered. For example, in the interior region,
0\x; x0\a;

lim
k!1

gðx; x0Þ ¼ cosh jx\ cosh jðx[ � aÞ
j sinh ja

: ð3:26Þ

Now we can compute the pressure on the plane by computing the xx component
of the stress tensor, which is given by (3.12a), so we find

txx

��
x¼a� ¼

1
2i
�j� 2j

~D

kj
2

� �2
" #

; ð3:27aÞ

txx

��
x¼aþ ¼ �

1
2i

j; ð3:27bÞ

and the flux of momentum deposited in the plane x ¼ a is

txx

��
x¼a� � txx

��
x¼aþ ¼

ij
2
kjþ 1
� �2

e2ja � 1
; ð3:28Þ
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and then by integrating over frequency and transverse momentum we obtain the
pressure:

PTM ¼ � 1
32p2a4

Z1

0

dyy3 1

4a
ky þ 1
	 
2

ey � 1
: ð3:29Þ

In the limit of weak coupling, this behaves as follows:

PTM� � 15
64p2a6

k2; ð3:30Þ

which is to be compared with (3.15a). In strong coupling, on the other hand, it has
precisely the same limit as the TE contribution, (3.15b), which confirms the
expectation given at the end of the previous subsection. Graphs of the two func-
tions are given in Fig. 3.1.

For calibration purposes we give the Casimir pressure in practical units between
ideal perfectly conducting parallel plates at zero temperature:

P ¼ � p2

240a4
�hc ¼ � 1:30 mPa

ða=1 lmÞ4
: ð3:31Þ

0.0 20.0 40.0 60.0 80.0 100.0
λ
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P
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Fig. 3.1 TE and TM Casimir pressures between d-function planes having strength k and
separated by a distance a. In each case, the pressure is plotted as a function of the dimensionless
coupling, ka or k=a, respectively, for TE and TM contributions
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3.2.2 Self–energy of Boundary Layer

Here we show that the divergent self-energy of a single plate, half the divergent
term in (3.17), can be interpreted as the energy associated with the boundary layer.
We do this in a simple context by considering a scalar field interacting with the
background

Lint ¼ �
k
2
/2r; ð3:32Þ

where the background field r expands the meaning of the d function,

rðxÞ ¼ h; � d
2 \x\ d

2 ;

0; otherwise;

(
ð3:33Þ

with the property that hd ¼ 1: The reduced Green’s function satisfies

� o2

ox2
þ j2 þ krðxÞ

� �
gðx; x0Þ ¼ dðx� x0Þ: ð3:34Þ

This may be easily solved in the region of the slab, � d
2 \x\ d

2 ;

gðx; x0Þ ¼ 1
2j0

�
e�j0 jx�x0j þ 1

D̂

�
kh cosh j0ðxþ x0Þ

þ ðj0 � jÞ2e�j0d cosh j0ðx� x0Þ
��
:

ð3:35Þ

Here j0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ kh
p

; and

D̂ ¼ 2jj0 cosh j0dþ ðj2 þ j02Þ sinh j0d: ð3:36Þ

This result may also easily be derived from the multiple reflection formulas
given in [46], and agrees with that given by Graham and Olum [51].

Let us proceed here with more generality, and consider the stress tensor with an
arbitrary conformal term [52],

Tlm ¼ ol/om/� 1
2

glmðok/ok/þ kh/2Þ � nðolom � glmo2Þ/2; ð3:37Þ

in d þ 2 dimensions, d being the number of transverse dimensions, and n is an
arbitrary parameter, sometimes called the conformal parameter. Applying the
corresponding differential operator to the Green’s function (3.35), introducing
polar coordinates in the ðf; kÞ plane, with f ¼ j cos h; k ¼ j sin h; and

hsin2 hi ¼ d

d þ 1
; ð3:38Þ

we get the following form for the energy density within the slab.
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hT00i ¼ 2�d�2p�ðdþ1Þ=2

Cððd þ 3Þ=2Þ

Z1

0

djjd

j0D̂

�
kh ð1� 4nÞð1þ dÞj02 � j2
� �

cosh 2j0x

� ðj0 � jÞ2e�j0dj2

�
; �d=2\x\d=2: ð3:39Þ

We can also calculate the energy density on the other side of the boundary,
from the Green’s function for x; x0\� d=2;

gðx; x0Þ ¼ 1
2j

e�jjx�x0j � ejðxþx0þdÞkh
sinh j0d

D̂

� �
; ð3:40Þ

and the corresponding energy density is given by

hT00i ¼ � dð1� 4nðd þ 1Þ=dÞ
2dþ2pðdþ1Þ=2Cððd þ 3Þ=2Þ

Z1

0

djjdþ1 1

D̂
khe2jðxþd=2Þ sinh j0d; ð3:41Þ

which vanishes if the conformal value of n is used. An identical contribution
comes from the region x [ d=2:

Integrating hT00i over all space gives the vacuum energy of the slab

Eslab ¼ �
1

2dþ2pðdþ1Þ=2Cððd þ 3Þ=2Þ

Z1

0

djjd 1

j0D̂

�
ðj0 � jÞ2j2e�j0dd

þ ðkhÞ2 sinh j0d
j0

�
: ð3:42Þ

Note that the conformal term does not contribute to the total energy. If we now
take the limit d! 0 and h!1 so that hd ¼ 1; we immediately obtain the self-
energy of a single d-function plate:

Ed ¼ lim
h!1

Eslab ¼
1

2dþ2pðdþ1Þ=2Cððd þ 3Þ=2Þ

Z1

0

djjd k
kþ 2j

: ð3:43Þ

which for d ¼ 2 precisely coincides with one-half the constant term in (3.17).
There is no surface term in the total Casimir energy as long as the slab is of finite
width, because we may easily check that d

dx g
��
x¼x0

is continuous at the boundaries

� d
2 : However, if we only consider the energy internal to the slab we encounter not

only the integrated energy density but a surface term from the integration by
parts—see (3.21). It is the complement of this boundary term that gives rise to Ed;
(3.43),in this way of proceeding. That is, as d! 0;

�
Z

slab

ðdrÞ
Z

df f2 Gðr; rÞ ¼ 0; ð3:44Þ

50 K. A. Milton



so

Ed ¼ Ê
��
x¼�d=2

þ Ê
��
x¼d=2

; ð3:45Þ

with the normal defining the surface energies pointing into the slab. This means
that in this limit, the slab and surface energies coincide.

Further insight is provided by examining the local energy density. In this we
follow the work of Graham and Olum [51, 53]. From (3.39) we can calculate
the behavior of the energy density as the boundary is approached from the
inside:

hT00i� Cðd þ 1Þkh

2dþ4pðdþ1Þ=2Cððd þ 3Þ=2Þ
1� 4nðd þ 1Þ=d

ðd� 2jxjÞd
; jxj ! d=2: ð3:46Þ

For d ¼ 2 for example, this agrees with the result found in [51] for n ¼ 0 :

hT00i� kh

96p2

ð1� 6nÞ
ðd=2� jxjÞ2

; jxj ! d
2
: ð3:47Þ

Note that, as we expect, this surface divergence vanishes for the conformal
stress tensor [52], where n ¼ d=4ðd þ 1Þ: (There will be subleading divergences if
d [ 2:) The divergent term in the local energy density from the outside, (3.41), as
x! �d=2; is just the negative of that found in (3.46). This is why, when the total
energy is computed by integrating the energy density, it is finite for d\2; and
independent of n: The divergence encountered for d ¼ 2 may be handled by
renormalization of the interaction potential [51].

Note, further, that for a thin slab, close to the exterior but such that the slab still
appears thin, x	 d; the sum of the exterior and interior energy density diver-
gences combine to give the energy density outside a d-function potential:

ud ¼ �
k

96p2
ð1� 6nÞ h

ðx� d=2Þ2
� h

ðxþ d=2Þ2

" #
¼ � k

48p2

1� 6n
x3

; ð3:48Þ

for small x. Although this limit might be criticized as illegitimate, this result is
correct for a d-function potential, and we will see that this divergence structure
occurs also in spherical and cylindrical geometries, so that it is a universal surface
divergence without physical significance, barring gravity.

For further discussion on surface divergences, see Sect. 3.3

3.3 Surface and Volume Divergences

It is well known as we have just seen that in general the Casimir energy density
diverges in the neighborhood of a surface. For flat surfaces and conformal theories
(such as the conformal scalar theory considered above [36], or electromagnetism)
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those divergences are not present.1 In particular, Brown and Maclay [58] calcu-
lated the local stress tensor for two ideal plates separated by a distance a along the
z axis, with the result for a conformal scalar

hTlmi ¼ � p2

1440a4
½4ẑlẑm � glm�: ð3:49Þ

This result was given more recent rederivations in [59, 36]. Dowker and
Kennedy [60] and Deutsch and Candelas [61] considered the local stress tensor
between planes inclined at an angle a; with the result, in cylindrical coordinates
ðt; r; h; zÞ;

hTlmi ¼ � f ðaÞ
720p2r4

1 0 0 0

0 �1 0 0

0 0 3 0

0 0 0 �1

0
BBB@

1
CCCA; ð3:50Þ

where for a conformal scalar, with Dirichlet boundary conditions,

f ðaÞ ¼ p2

2a2

p2

a2
� a2

p2

� �
; ð3:51Þ

and for electromagnetism, with perfect conductor boundary conditions,

f ðaÞ ¼ p2

a2
þ 11

� �
p2

a2
� 1

� �
: ð3:52Þ

For a! 0 we recover the pressures and energies for parallel plates, (3.15b) and
(3.31). (These results were later discussed in [62].)

Although for perfectly conducting flat surfaces, the energy density is finite, for
electromagnetism the individual electric and magnetic fields have divergent RMS
values,

hE2i� � hB2i� 1
�4
; �! 0; ð3:53Þ

a distance � above a conducting surface. However, if the surface is a dielectric,
characterized by a plasma dispersion relation, these divergences are softened

hE2i� 1
�3
; �hB2i� 1

�2
; �! 0; ð3:54Þ

so that the energy density also diverges [63, 64]

1 In general, this need not be the case. For example, Romeo and Saharian [54] show that with
mixed boundary conditions the surface divergences need not vanish for parallel plates. For
additional work on local effects with mixed (Robin) boundary conditions, applied to spheres and
cylinders, and corresponding global effects, see [55–57, 50]. See also Sect. 3.2.2 and [51, 53].
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hT00i� 1
�3
; �! 0: ð3:55Þ

The null energy condition (nlnl ¼ 0)

Tlmnlnm
 0 ð3:56Þ

is satisfied, so that gravity still focuses light.
Graham [65, 66] examined the general relativistic energy conditions required

by causality. In the neighborhood of a smooth domain wall, given by a hyperbolic
tangent, the energy density is always negative at large enough distances. Thus the
weak energy condition is violated, as is the null energy condition (3.56). However,
when (3.56) is integrated over a complete geodesic, positivity is satisfied. It is not
clear if this last condition, the Averaged Null Energy Condition, is always obeyed
in flat space. Certainly it is violated in curved space, but the effects always seem
small, so that exotic effects such as time travel are prohibited.

However, as Deutsch and Candelas [61] showed many years ago, in the
neighborhood of a curved surface for conformally invariant theories, hTlmi
diverges as ��3; where � is the distance from the surface, with a coefficient pro-
portional to the sum of the principal curvatures of the surface. In particular they
obtain the result, in the vicinity of the surface,

hTlmi� ��3Tð3Þlm þ ��2Tð2Þlm þ ��1T ð1Þlm ; ð3:57Þ

and obtain explicit expressions for the coefficient tensors T ð3Þlm and T ð2Þlm in terms of
the extrinsic curvature of the boundary.

For example, for the case of a sphere, the leading surface divergence has the
form, for conformal fields, for r ¼ aþ �; �! 0

hTlmi ¼
A

�3

2=a 0 0 0

0 0 0 0

0 0 a 0

0 0 0 a sin2 h

0
BBB@

1
CCCA; ð3:58Þ

in spherical polar coordinates, where the constant is A ¼ 1=720p2 for a scalar field
satisfying Dirichlet boundary conditions, or A ¼ 1=60p2 for the electromagnetic
field satisfying perfect conductor boundary conditions. Note that (3.58) is properly
traceless. The cubic divergence in the energy density near the surface translates
into the quadratic divergence in the energy found for a conducting ball [67].
The corresponding quadratic divergence in the stress corresponds to the absence of
the cubic divergence in hTrri:

This is all completely sensible. However, in their paper Deutsch and Candelas
[61] expressed a certain skepticism about the validity of the result of [68] for the
spherical shell case (described in part in Sect. 3.4.2) where the divergences cancel.
That skepticism was reinforced in a later paper by Candelas [31], who criticized
the authors of [68] for omitting d function terms, and constants in the energy.
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These objections seem utterly without merit. In a later critical paper by the same
author [70], it was asserted that errors were made, rather than a conscious removal
of unphysical divergences.

Of course, surface curvature divergences are present. As Candelas noted
[69, 70], they have the form

E ¼ ES
Z

dSþ EC
Z

dSðj1 þ j2Þ þ EC
I

Z
dSðj1 � j2Þ2 þ EC

II

Z
dSj1j2 þ � � � ;

ð3:59Þ

where j1 and j2 are the principal curvatures of the surface. The question is to what
extent are they observable. After all, as has been shown in [38, 36] and in
Sect. 3.2.2, we can drastically change the local structure of the vacuum expectation
value of the energy-momentum tensor in the neighborhood of flat plates by merely
exploiting the ambiguity in the definition of that tensor, yet each yields the same
finite, observable (and observed!) energy of interaction between the plates. For
curved boundaries, much the same is true. A priori, we do not know which energy-
momentum tensor to employ, and the local vacuum-fluctuation energy density is to
a large extent meaningless. It is the global energy, or the force between distinct
bodies, that has an unambiguous value. It is the belief of the author that diver-
gences in the energy which go like a power of the cutoff are probably unobserv-
able, being subsumed in the properties of matter. Moreover, the coefficients of the
divergent terms depend on the regularization scheme. Logarithmic divergences, of
course, are of another class [40]. Dramatic cancellations of these curvature terms
can occur. It might be thought that the reason a finite result was found for the
Casimir energy of a perfectly conducting spherical shell [15, 20, 68] is that the
term involving the squared difference of curvatures in (3.59) is zero only in that
case. However, it has been shown that at least for the case of electromagnetism the
corresponding term is not present (or has a vanishing coefficient) for an arbitrary
smooth cavity [21], and so the Casimir energy for a perfectly conducting ellipsoid
of revolution, for example, is finite.2 This finiteness of the Casimir energy (usually
referred to as the vanishing of the second heat-kernel coefficient [71]) for an ideal
smooth closed surface was anticipated already in [20], but contradicted by [61].
More specifically, although odd curvature terms cancel inside and outside for any
thin shell, it would be anticipated that the squared-curvature term, which is present
as a surface divergence in the energy density, would be reflected as an unre-
movable divergence in the energy. For a closed surface the last term in (3.59) is a
topological invariant, so gives an irrelevant constant, while no term of the type of
the penultimate term can appear due to the structure of the traced cylinder
expansion [50].

2 The first steps have been made for calculating the Casimir energy for an ellipsoidal boundary
[34, 35], but only for scalar fields since the vector Helmholtz equation is not separable in the
exterior region.
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3.4 Casimir Forces on Spheres via d-Function Potentials

This section is an adaptation and an extension of calculations presented in [45, 46].
This investigation was carried out in response to the program of the MIT group
[41–44, 49]. They first rediscovered irremovable divergences in the Casimir energy
for a circle in 2þ 1 dimensions first discovered by Sen [72, 73], but then found
divergences in the case of a spherical surface, thereby casting doubt on the validity
of the Boyer calculation [15]. Some of their results, as we shall see, are spurious,
and the rest are well known [40]. However, their work has been valuable in sparking
new investigations of the problems of surface energies and divergences.

We now carry out the calculation we presented in Sect. 3.2 in three spatial
dimensions, with a radially symmetric background

Lint ¼ �
1
2

k
a2

dðr � aÞ/2ðxÞ; ð3:60Þ

which would correspond to a Dirichlet shell in the limit k!1: The scaling of the
coupling, which here has dimensions of length, is demanded by the requirement
that the spatial integral of the potential be independent of a. The time-Fourier
transformed Green’s function satisfies the equation (j2 ¼ �x2)

�r2 þ j2 þ k
a2

dðr � aÞ
� �

Gðr; r0Þ ¼ dðr� r0Þ: ð3:61Þ

We write G in terms of a reduced Green’s function

Gðr; r0Þ ¼
X

lm

glðr; r0ÞYlmðXÞY�lmðX0Þ; ð3:62Þ

where gl satisfies

� 1
r2

d
dr

r2 d
dr
þ lðlþ 1Þ

r2
þ j2 þ k

a2
dðr � aÞ

� �
glðr; r0Þ ¼

1
r2

dðr � r0Þ: ð3:63Þ

We solve this in terms of modified Bessel functions, ImðxÞ; KmðxÞ; where
m ¼ lþ 1=2; which satisfy the Wronskian condition

I0mðxÞKmðxÞ � K 0mðxÞImðxÞ ¼
1
x
: ð3:64Þ

The solution to (3.63) is obtained by requiring continuity of gl at each singu-
larity, at r0 and a, and the appropriate discontinuity of the derivative. Inside the
sphere we then find (0\r; r0\a)

glðr; r0Þ ¼
1

jrr0
elðjr [ Þslðjr\Þ �

k
ja2

slðjrÞslðjr0Þ e2
l ðjaÞ

1þ k
ja2 slðjaÞelðjaÞ

" #
:

ð3:65Þ
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Here we have introduced the modified Riccati-Bessel functions,

slðxÞ ¼
ffiffiffiffiffi
px

2

r
Ilþ1=2ðxÞ; elðxÞ ¼

ffiffiffiffiffi
2x

p

r
Klþ1=2ðxÞ: ð3:66Þ

Note that (3.65) reduces to the expected Dirichlet result, vanishing as r ! a; in
the limit of strong coupling:

lim
k!1

glðr; r0Þ ¼
1

jrr0
elðjr[ Þslðjr\Þ �

elðjaÞ
slðjaÞ slðjrÞslðjr0Þ

� �
: ð3:67Þ

When both points are outside the sphere, r; r0[ a; we obtain a similar result:

glðr; r0Þ ¼
1

jrr0
elðjr [ Þslðjr\Þ �

k
ja2

elðjrÞelðjr0Þ s2
l ðjaÞ

1þ k
ja2 slðjaÞelðjaÞ

" #
:

ð3:68Þ

which similarly reduces to the expected result as k!1:
Now we want to get the radial–radial component of the stress tensor to extract

the pressure on the sphere, which is obtained by applying the operator

oror0 �
1
2
ð�o0o00 þr � r0Þ ! 1

2
oror0 � j2 � lðlþ 1Þ

r2

� �
ð3:69Þ

to the Green’s function, where in the last term we have averaged over the surface
of the sphere. Alternatively, we could notice that [74]

r � r0Plðcos cÞ
����
c!0

¼ lðlþ 1Þ
r2

; ð3:70Þ

where c is the angle between the two directions. In this way we find, from the
discontinuity of hTrri across the r ¼ a surface, the net stress

S ¼ � k
2pa3

X1
l¼0

ð2lþ 1Þ
Z1

0

dx
elðxÞslðxÞð Þ0� 2elðxÞslðxÞ

x

1þ kaelðxÞslðxÞ
x

: ð3:71Þ

(Notice that there was an error in the sign of the stress, and of the scaling of the
coupling, in [45, 46].)

The same result can be deduced by computing the total energy (3.16). The free
Green’s function, the first term in (3.65) or (3.68), evidently makes no significant
contribution to the energy, for it gives a term independent of the radius of the
sphere, a, so we omit it. The remaining radial integrals are simply

Zx

0

dy s2
l ðyÞ ¼

1
2x

x2 þ lðlþ 1Þ
� �

s2
l ðxÞ þ xslðxÞs0lðxÞ � x2s02l ðxÞ

� �
; ð3:72aÞ
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Z1

x

dy e2
l ðyÞ ¼ �

1
2x

x2 þ lðlþ 1Þ
� �

e2
l ðxÞ þ xelðxÞe0lðxÞ � x2e02l ðxÞ

� �
: ð3:72bÞ

Then using the Wronskian (3.64), we find that the Casimir energy is

E ¼ � 1
2pa

X1
l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln 1þ k
a

ImðxÞKmðxÞ
� �

: ð3:73Þ

If we differentiate with respect to a we immediately recover the force (3.71).
This expression, upon integration by parts, coincides with that given by Barton
[75], and was first analyzed in detail by Scandurra [76]. This result has also been
rederived using the multiple-scattering formalism [25]. For strong coupling, it
reduces to the well-known expression for the Casimir energy of a massless scalar
field inside and outside a sphere upon which Dirichlet boundary conditions are
imposed, that is, that the field must vanish at r ¼ a :

lim
k!1

E ¼ � 1
2pa

X1
l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln ImðxÞKmðxÞ½ �; ð3:74Þ

because multiplying the argument of the logarithm by a power of x is without
effect, corresponding to a contact term. Details of the evaluation of (3.74) are
given in [36], and will be considered in Sect. 3.4.2 below. (See also [77–79].)

The opposite limit is of interest here. The expansion of the logarithm is
immediate for small k: The first term, of order k; is evidently divergent, but
irrelevant, since that may be removed by renormalization of the tadpole graph.
In contradistinction to the claim of [42–44, 49], the order k2 term is finite, as
established in [36]. That term is

Eðk
2Þ ¼ k2

4pa3

X1
l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx
½Ilþ1=2ðxÞKlþ1=2ðxÞ�2: ð3:75Þ

The sum on l can be carried out using a trick due to Klich [80]: The sum rule

X1
l¼0

ð2lþ 1ÞelðxÞslðyÞPlðcos hÞ ¼ xy

q
e�q; ð3:76Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 2xy cos h

p
; is squared, and then integrated over h; according

to

Z1

�1

dðcos hÞPlðcos hÞPl0 ðcos hÞ ¼ dll0
2

2lþ 1
: ð3:77Þ
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In this way we learn that

X1
l¼0

ð2lþ 1Þe2
l ðxÞs2

l ðxÞ ¼
x2

2

Z4x

0

dw
w

e�w: ð3:78Þ

Although this integral is divergent, because we did not integrate by parts in
(3.75), that divergence does not contribute:

Eðk
2Þ ¼ k2

4pa3

Z1

0

dx
1
2

x
d
dx

Z4x

0

dw
w

e�w ¼ k2

32pa3
; ð3:79Þ

which is exactly the result (4.25) of [36].
However, before we are too euphoric, we recognize that the order k3 term

appears logarithmically divergent, just as [44, 49] claim. This does not signal a
breakdown in perturbation theory. Suppose we subtract off and add back in the two
leading terms,

E ¼� 1
2pa

X1
l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln 1þ k
a

ImKm

� �
� k

a
aImKm þ

k2

2a2
ðImKmÞ2

� �
þ k2

32pa3
:

ð3:80Þ

To study the behavior of the sum for large values of l, we can use the uniform
asymptotic expansion (Debye expansion), for m!1;

ImðxÞ�
ffiffiffiffiffiffiffiffi

t

2pm

r
emg 1þ

X
k

ukðtÞ
mk

 !
;

KmðxÞ�
ffiffiffiffiffi
pt

2m

r
e�mg 1þ

X
k

ð�1Þk ukðtÞ
mk

 !
;

ð3:81Þ

where

x ¼ mz; t ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
; gðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ ln

z

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2
p

� �
;

dg
dz
¼ 1

zt
:

ð3:82Þ

The polynomials in t appearing in (3.81) are generated by

u0ðtÞ ¼ 1; ukðtÞ ¼
1
2

t2ð1� t2Þu0k�1ðtÞ þ
1
8

Z t

0

dsð1� 5s2Þuk�1ðsÞ: ð3:83Þ

We now insert these expansions into (3.80) and expand not in k but in m; the
leading term is
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Eðk
3Þ � k3

24pa4

X1
l¼0

1
m

Z1

0

dz

ð1þ z2Þ3=2
¼ k3

24pa4
fð1Þ: ð3:84Þ

Although the frequency integral is finite, the angular momentum sum is
divergent. The appearance here of the divergent fð1Þ seems to signal an insu-
perable barrier to extraction of a finite Casimir energy for finite k: The situation is
different in the limit k!1 —See Sect. 3.4.2.

This divergence has been known for many years, and was first calculated
explicitly in 1998 by Bordag et al. [40], where the second heat kernel coefficient
gave an equivalent result,

E� k3

48pa4

1
s
; s! 0: ð3:85Þ

A possible way of dealing with this divergence was advocated in [76]. More
recently, Bordag and Vassilevich [81] have reanalyzed such problems from the
heat kernel approach. They show that this Oðk3Þ divergence corresponds to a
surface tension counterterm, an idea proposed by me in 1980 [82, 83] in con-
nection with the zero-point energy contribution to the bag model. Such a surface
term corresponds to k fixed, which then necessarily implies a divergence of
order k3: Bordag argues that it is perfectly appropriate to insert a surface tension
counterterm so that this divergence may be rendered finite by renormalization.

3.4.1 TM Spherical Potential

Of course, the scalar model considered in the previous subsection is merely a toy
model, and something analogous to electrodynamics is of far more physical rel-
evance. There are good reasons for believing that cancellations occur in general
between TE (Dirichlet) and TM (Robin) modes. Certainly they do occur in the
classic Boyer energy of a perfectly conducting spherical shell [15, 20, 68], and the
indications are that such cancellations occur even with imperfect boundary con-
ditions [75]. Following the latter reference, let us consider the potential

Lint ¼
1
2
k

1
r

o

or
dðr � aÞ/2ðxÞ: ð3:86Þ

Here k again has dimensions of length. In the limit k!1 this corresponds to
TM boundary conditions. The reduced Green’s function is thus taken to satisfy

� 1
r2

o

or
r2 o

or
þ lðlþ 1Þ

r2
þ j2 � k

r

o

or
dðr � aÞ

� �
glðr; r0Þ ¼

1
r2

dðr � r0Þ: ð3:87Þ

At r ¼ r0 we have the usual boundary conditions, that gl be continuous, but that
its derivative be discontinuous,
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r2 o

or
gl

����
r¼r0þ

r¼r0�
¼ �1; ð3:88Þ

while at the surface of the sphere the derivative is continuous,

o

or
rgl

����
r¼aþ

r¼a�
¼ 0; ð3:89aÞ

while the function is discontinuous,

gl

����
r¼aþ

r¼a�
¼ � k

a

o

or
rgl

����
r¼a

: ð3:89bÞ

Equations (3.89a) and (3.89b) are the analogues of the boundary conditions
(3.23a, b) treated in Sect. 3.2.1.

It is then easy to find the Green’s function. When both points are inside the
sphere,

r; r0\a : glðr; r0Þ ¼
1

jrr0
slðjr\Þelðjr[ Þ �

kj½e0lðjaÞ�2slðjrÞslðjr0Þ
1þ kje0lðjaÞs0lðjaÞ

" #
;

ð3:90aÞ

and when both points are outside the sphere,

r; r0[ a : glðr; r0Þ ¼
1

jrr0
slðjr\Þelðjr [ Þ �

kj½s0lðjaÞ�2elðjrÞelðjr0Þ
1þ kje0lðjaÞs0lðjaÞ

" #
:

ð3:90bÞ

It is immediate that these supply the appropriate Robin boundary conditions in
the k!1 limit:

lim
k!0

o

or
rgl

����
r¼a

¼ 0: ð3:91Þ

The Casimir energy may be readily obtained from (3.16), and we find, using the
integrals (3.72a, b)

E ¼ � 1
2pa

X1
l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln 1þ k
a

xe0lðxÞs0lðxÞ
� �

: ð3:92Þ

The stress may be obtained from this by applying �o=oa; and regarding k as
constant, or directly, from the Green’s function by applying the operator,

trr ¼
1
2i
rrrr0 � j2 � lðlþ 1Þ

r2

� �
gl

����
r0¼r

; ð3:93Þ
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which is the same as that in (3.69), except that

rr ¼
1
r
orr; ð3:94Þ

appropriate to TM boundary conditions (see [84], for example). Either way, the
total stress on the sphere is

S ¼ � k
2pa3

X1
l¼0

ð2lþ 1Þ
Z1

0

dx x2

h
e0lðxÞs0lðxÞ

i0
1þ k

a xe0lðxÞs0lðxÞ
: ð3:95Þ

The result for the energy (3.92) is similar, but not identical, to that given by
Barton [75].

Suppose we now combine the TE and TM Casimir energies, (3.73) and (3.92):

ETE þ ETM ¼ � 1
2pa

X1
l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln 1þ k
a

elsl

x

� �
1þ k

a
xe0ls

0
l

� �� �
:

ð3:96Þ

In the limit k!1 this reduces to the familiar expression for the perfectly
conducting spherical shell [68]:

lim
k!1

E ¼ � 1
2pa

X1
l¼1

ð2lþ 1Þ
Z1

0

dx x
e0l
el
þ e00l

e0l
þ s0l

sl
þ s00l

s0l

� �
: ð3:97Þ

Here we have, as appropriate to the electrodynamic situation, omitted the l ¼ 0
mode. This expression yields a finite Casimir energy, as we will see in Sect. 3.4.2.
What about finite k? In general, it appears that there is no chance that the diver-
gence found in the previous section in order k3 can be cancelled. But suppose the
coupling for the TE and TM modes are different. If kTEkTM ¼ 4a2; a cancellation
appears possible, as discussed in [46].

3.4.2 Evaluation of Casimir Energy for a Dirichlet
Spherical Shell

In this section we will evaluate the above expression (3.74) for the Casimir energy
for a massless scalar in three space dimensions, with a spherical boundary on which
the field vanishes. This corresponds to the TE modes for the electrodynamic situ-
ation first solved by Boyer [15, 20, 68]. The purpose of this section (adapted from
[36, 46]) is to emphasize anew that, contrary to the implication of [42–44, 49], the
corresponding Casimir energy is also finite for this configuration.

The general calculation in D spatial dimensions was given in [77]; the pressure
is given by the formula
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P ¼ �
X1
l¼0

ð2lþ D� 2ÞCðlþ D� 2Þ
l!2DpðDþ1Þ=2CðD�1

2 ÞaDþ1

Z1

0

dx x
d
dx

ln ImðxÞKmðxÞx2�D
� �

: ð3:98Þ

Here m ¼ l� 1þ D=2: For D ¼ 3 this expression reduces to

P ¼ � 1
8p2a4

X1
l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln Ilþ1=2ðxÞKlþ1=2ðxÞ=x
� �

: ð3:99Þ

This precisely corresponds to the strong limit k!1 given in (3.74), if we
recall the comment made about contact terms there. In [77] we evaluated
expression (3.98) by continuing in D from a region where both the sum and
integrals existed. In that way, a completely finite result was found for all positive
D not equal to an even integer.

Here we will adopt a perhaps more physical approach, that of allowing the
time-coordinates in the underlying Green’s function to approach each other,
temporal point-splitting, as described in [68]. That is, we recognize that the
x integration above is actually a (dimensionless) imaginary frequency integral, and
therefore we should replace

Z1

0

dx f ðxÞ ¼ 1
2

Z1

�1

dy eiydf ðjyjÞ; ð3:100Þ

where at the end we are to take d! 0: Immediately, we can replace the x�1 inside
the logarithm in (3.99) by x, which makes the integrals converge, because the
difference is proportional to a d function in the time separation, a contact term
without physical significance.

To proceed, we use the uniform asymptotic expansions for the modified Bessel
functions, (3.81). This is an expansion in inverse powers of m ¼ lþ 1=2; low terms
in which turn out to be remarkably accurate even for modest l. The leading terms
in this expansion are, using (3.81),

ln xIlþ1=2ðxÞKlþ1=2ðxÞ
� �

� ln
zt

2
þ 1

m2
gðtÞ þ 1

m4
hðtÞ þ � � � ; ð3:101Þ

gðtÞ ¼ 1
8
ðt2 � 6t4 þ 5t6Þ; ð3:102aÞ

hðtÞ ¼ 1
64
ð13t4 � 284t6 þ 1062t8 � 1356t10 þ 565t12Þ: ð3:102bÞ

The leading term in the pressure is therefore

P0 ¼ �
1

8p2a4

X1
l¼0

ð2lþ 1Þm
Z1

0

dz t2 ¼ � 1
8pa4

X1
l¼0

m2 ¼ 3
32pa4

fð�2Þ ¼ 0; ð3:103Þ
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where in the last step we have used the formal zeta function evaluation3

X1
l¼0

m�s ¼ ð2s � 1ÞfðsÞ: ð3:104Þ

Here the rigorous way to argue is to recall the presence of the point-splitting
factor eimzd and to carry out the sum on l using

X1
l¼0

eimzd ¼ � 1
2i

1
sin zd=2

ð3:105Þ

so
X1
l¼0

m2eimzd ¼ � d2

dðzdÞ2
i

2 sin zd=2
¼ i

8
� 2

sin3 zd=2
þ 1

sin zd=2

� �
: ð3:106Þ

Then P0 is given by the divergent expression

P0 ¼
i

4p2a4d3

Z1

�1

dz
z3

1
1þ z2

; ð3:107Þ

which we argue is zero because the integrand is odd, as justified by averaging over
contours passing above and below the pole at z ¼ 0:

The next term in the uniform asymptotic expansion (3.101), that involving g,
likewise gives zero pressure, as intimated by (3.104), which vanishes at s ¼ 0.
The same conclusion follows from point splitting, using (3.105) and arguing that
the resulting integrand � z2t3g0ðtÞ=zd is odd in z. Again, this cancellation does not
occur in the electromagnetic case because there the sum starts at l ¼ 1:

So here the leading term which survives is that of order m�4 in (3.101), namely

P2 ¼
1

4p2a4

X1
l¼0

1
m2

Z1

0

dz hðtÞ; ð3:108Þ

where we have now dropped the point-splitting factor because this expression is
completely convergent. The integral over z is

Z1

0

dz hðtÞ ¼ 35p
32768

ð3:109Þ

and the sum over l is 3fð2Þ ¼ p2=2; so the leading contribution to the stress on the
sphere is

S2 ¼ 4pa2P2 ¼
35p2

65536a2
¼ 0:00527094

a2
: ð3:110Þ

3 Note that the corresponding TE contribution the electromagnetic Casimir pressure would not
be zero, for there the sum starts from l ¼ 1.
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Numerically this is a terrible approximation.
What we must do now is return to the full expression and add and subtract the

leading asymptotic terms. This gives

S ¼ S2 �
1

2pa2

X1
l¼0

ð2lþ 1ÞRl; ð3:111Þ

where

Rl ¼ Ql þ
Z1

0

dx ln zt þ 1
m2

gðtÞ þ 1
m4

hðtÞ
� �

; ð3:112Þ

where the integral

Ql ¼ �
Z1

0

dx ln½2xImðxÞKmðxÞ� ð3:113Þ

was given the asymptotic form in [77, 38] (l	 1):

Ql�
mp
2
þ p

128m
� 35p

32768m3
þ 565p

1048577m5
� 1208767p

2147483648m7

þ 138008357p
137438953472m9

þ � � � : ð3:114Þ

The first two terms in (3.114) cancel the second and third terms in (3.112), of
course. The third term in (3.114) corresponds to hðtÞ; so the last three terms
displayed in (3.114) give the asymptotic behavior of the remainder, which we call
wðmÞ: Then we have, approximately,

S �S2 �
1

pa2

Xn

l¼0

mRl �
1

pa2

X1
l¼nþ1

mwðmÞ: ð3:115Þ

For n ¼ 1 this gives S � 0:00285278=a2; and for larger n this rapidly
approaches the value first given in [77], and rederived in [78, 79, 85]

STE ¼ 0:002817=a2; ð3:116Þ

a value much smaller than the famous electromagnetic result [15, 86, 68, 20],

SEM ¼ 0:04618
a2

; ð3:117Þ

because of the cancellation of the leading terms noted above. Indeed, the TM
contribution was calculated separately in [84], with the result

STM ¼ �0:02204
1
a2
; ð3:118Þ

and then subtracting the l ¼ 0 modes from both contributions we obtain (3.117),
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SEM ¼ STE þSTM þ p
48a2

¼ 0:0462
a2

: ð3:119Þ

3.4.3 Surface Divergences in the Energy Density

The following discussion is based on [74]. Using (3.70), we immediately find the
following expression for the energy density inside or outside the sphere:

hT00i ¼
Z1

0

dj
2p

X1
l¼0

2lþ 1
4p

�j2 þ oror0 þ
lðlþ 1Þ

r2

� �
glðr; r0Þ

����
r0¼r

�

� 2n
1
r2

o

or
r2 o

or
glðr; rÞ

�
; ð3:120Þ

where n is the conformal parameter as seen in (3.37). To find the energy density in
either region we insert the appropriate Green’s functions (3.65) or (3.68), but
delete the free part,

g0
l ¼

1
jrr0

slðjr\Þelðjr [ Þ; ð3:121Þ

which corresponds to the bulk energy which would be present if either medium
filled all of space, leaving us with for r [ a

uðrÞ ¼ �ð1� 4nÞ
Z1

0

dj
2p

X1
l¼0

2lþ 1
4p

k
ja2 s2

l ðjaÞ
1þ k

ja2 elðjaÞslðjaÞ

�
e2

l ðjrÞ
jr2

�j21þ 4n
1� 4n

�

þ lðlþ 1Þ
r2

þ 1
r2

�
� 2

r3
elðjrÞe0lðjrÞ þ j

r2
e02l ðjrÞ

�
: ð3:122Þ

Inside the shell, r\a; the energy is given by a similar expression obtained from
(3.122) by interchanging el and sl:

We want to examine the singularity structure as r ! a from the outside. For
this purpose we use the leading uniform asymptotic expansion, l!1; obtained
from (3.81)

elðxÞ�
ffiffiffiffi
zt
p

e�mg; slðxÞ�
1
2

ffiffiffiffi
zt
p

emg;

e0lðxÞ� �
1ffiffiffiffi
zt
p e�mg; s0lðxÞ�

1
2

1ffiffiffiffi
zt
p emg;

ð3:123Þ

where m ¼ lþ 1=2; and z, t, and g are given in (3.82). The coefficient of
elðjrÞelðjr0Þ occurring in the d-function potential Green’s function (3.68), in
strong and weak coupling, becomes
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k
a
!1 :! slðjaÞ

elðjaÞ ð3:124aÞ

k
a
! 0 :! k

ja2
s2

l ðjaÞ: ð3:124bÞ

In either case, we carry out the asymptotic sum over angular momentum using
(3.123) and the analytic continuation of (3.105)

X1
l¼0

e�mv ¼ 1
2 sinh v

2

ð3:125Þ

Here (r � a)

v ¼ 2 gðzÞ � g z
a

r

	 
h i
� 2z

dg
dz
ðzÞr � a

r
¼ 2

t

r � a

r
: ð3:126Þ

The remaining integrals over z are elementary, and in this way we find that the
leading divergences in the energy density are as r ! aþ;

k
a
!1 : u� � 1

16p2

1� 6n

ðr � aÞ4
ð3:127aÞ

k
a
! 0 : uðnÞ � � k

a

� �nCð4� nÞ
96p2a4

ð1� 6nÞ a

r � a

	 
4�n
; n\4; ð3:127bÞ

where the latter is the leading divergence in order n. These results clearly seem to
demonstrate the virtue of the conformal value of n ¼ 1=6; but see below. (The
value for the Dirichlet sphere (127a) first appeared in [61]; it more recently was
rederived in [87], where, however, the subdominant term, the leading term if
n ¼ 1=6; namely (3.130), was not calculated. Of course, this result is the same
as the surface divergence encountered for parallel Dirichlet plates [36, 38].)
The perturbative divergence for n ¼ 1 in (3.127b) is exactly that found for a
plate—see (3.48).

Thus, for n ¼ 1=6 we must keep subleading terms. This includes keeping the
subdominant term in v;4

v � 2
t

r � a

r
þ t

r � a

r

	 
2
; ð3:128Þ

the distinction between tðzÞ and ~t ¼ tð~z ¼ za=rÞ;

~z~t � zt � t3z
r � a

r
; ð3:129Þ

4 Note there is a sign error in (4.8) of [74].
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as well as the next term in the uniform asymptotic expansion of the Bessel
functions (3.81). Including all this, it is straightforward to recover the well-known
result (3.58) [61] for strong coupling (Dirichlet boundary conditions):

k
a
!1 : u� 1

360p2

1

aðr � aÞ3
; ð3:130Þ

Following the same process for weak coupling, we find that the leading
divergence in order n, 1 n\3; is (r ! a�)

k! 0 : uðnÞ � k
a2

� �n 1
1440p2

1

aða� rÞ3�n ðn� 1Þðnþ 2ÞCð3� nÞ: ð3:131Þ

Note that the subleading OðkÞ term again vanishes. Both (3.130, 3.131) apply
for the conformal value n ¼ 1=6:

3.4.4 Total Energy and Renormalization

As discussed in [74] we may consider the potential, in the spirit of (3.32),

Lint ¼ �
k

2a2
/2rðrÞ; ð3:132aÞ

where

rðrÞ ¼
0; r\a�;
h; a�\r\aþ;
0; aþ\r:

8<
: ð3:132bÞ

Here a� ¼ a� d=2; and we set hd ¼ 1: That is, we have expanded the
d-function shell so that it has finite thickness.

In particular, the integrated local energy density inside, outside, and within the
shell is Ein; Eout; and Esh; respectively. The total energy of a given region is the
sum of the integrated local energy and the surface energy (3.20a) bounding that
region (n ¼ 1=6):

~Ein ¼ Ein þ Ê�; ð3:133aÞ

~Eout ¼ Eout þ Êþ; ð3:133bÞ

~Esh ¼ Esh þ Ê0þ þ Ê0�; ð3:133cÞ

where Ê� is the outside (inside) surface energy on the surface at r ¼ a�; while Ê0�
is the inside (outside) surface energy on the same surfaces. Ein; Eout; and Esh
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represent
R
ðdrÞhT00i in each region. Because for a nonsingular potential the

surface energies cancel across each boundary,

Êþ þ Ê0þ ¼ 0; Ê� þ Ê0� ¼ 0; ð3:134Þ

the total energy is

E ¼ ~Ein þ ~Eout þ ~Esh ¼ Ein þ Eout þ Esh: ð3:135Þ

In the singular thin shell limit, the integrated local shell energy is the total
surface energy of a thin Dirichlet shell:

Esh ¼ Êþ þ Ê� 6¼ 0: ð3:136Þ

See the remark at the end of Sect. 3.2.2. This shell energy, for the conformally
coupled theory, is finite in second order in the coupling (in at least two plausible
regularization schemes), but diverges in third order. We showed in [74] that the
latter precisely corresponds to the known divergence of the total energy in this
order. Thus we have established the suspected correspondence between surface
divergences and divergences in the total energy, which has nothing to do with
divergences in the local energy density as the surface is approached. This precise
correspondence should enable us to absorb such global divergences in a renor-
malization of the surface energy, and should lead to further advances of our
understanding of quantum vacuum effects. We will elaborate on this point in the
following.

3.5 Semitransparent Cylinder

This section is based on [37]. We consider a massless scalar field / in a d-cylinder
background,

Lint ¼ �
k

2a
dðr � aÞ/2; ð3:137Þ

a being the radius of the ‘‘semitransparent’’ cylinder. The massive case was earlier
considered by Scandurra [88]. We will continue to assume that the dimensionless
coupling k [ 0 to avoid the appearance of negative eigenfrequencies. The time-
Fourier transform of the Green’s function satisfies

�r2 � x2 þ kdðr � aÞ
� �

Gðr; r0Þ ¼ dðr� r0Þ: ð3:138Þ

Adopting cylindrical coordinates, we write

Gðr; r0Þ ¼
Z

dk
2p

eikðz�z0Þ
X1

m¼�1

1
2p

eimðu�u0Þgmðr; r0; kÞ; ð3:139Þ
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where the reduced Green’s function satisfies

� 1
r

o

or
r
o

or
þ j2 þ m2

r2
þ k

a
dðr � aÞ

� �
gmðr; r0; kÞ ¼ 1

r
dðr � r0Þ; ð3:140Þ

where j2 ¼ k2 � x2. Let us immediately make a Euclidean rotation,

x! if; ð3:141Þ

where f is real, so j is likewise always real. Apart from the d functions, this is the
modified Bessel equation.

Because of the Wronskian (3.64) satisfied by the modified Bessel functions, we
have the general solution to (3.140) as long as r 6¼ a to be

gmðr; r0; kÞ ¼ Imðjr\ÞKmðjr [ Þ þ Aðr0ÞImðjrÞ þ Bðr0ÞKmðjrÞ; ð3:142Þ

where A and B are arbitrary functions of r0: Now we incorporate the effect of the d
function at r ¼ a in (3.140). It implies that gm must be continuous at r ¼ a; while it
has a discontinuous derivative,

o

or
gmðr; r0; kÞ

����
r¼aþ

r¼a�
¼ k

a
gmða; r0; kÞ; ð3:143Þ

from which we rather immediately deduce the form of the Green’s function inside
and outside the cylinder:

r; r0\a : gmðr; r0; kÞ ¼ Imðjr\ÞKmðjr[ Þ

� kK2
mðjaÞ

1þ kImðjaÞKmðjaÞImðjrÞImðjr0Þ; ð3:144aÞ

r; r0[ a : gmðr; r0; kÞ ¼ Imðjr\ÞKmðjr[ Þ

� kI2
mðjaÞ

1þ kImðjaÞKmðjaÞKmðjrÞKmðjr0Þ: ð3:144bÞ

Notice that in the limit k!1 we recover the Dirichlet cylinder result, that is,
that gm vanishes at r ¼ a:

3.5.1 Cylinder Pressure and Energy

The easiest way to calculate the total energy is to compute the pressure on the
cylindrical walls due to the quantum fluctuations in the field. This may be com-
puted, at the one-loop level, from the vacuum expectation value of the stress
tensor,
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hTlmi ¼ olo0m � 1
2

glmoko0k

� �
1
i

Gðx; x0Þ
����
x¼x0
� nðolom � glmo2Þ 1

i
Gðx; xÞ; ð3:145Þ

which we have written in a Cartesian coordinate system. Here we have again
included the conformal parameter n; which is equal to 1/6 for the stress tensor that
makes conformal invariance manifest. The conformal term does not contribute to
the radial-radial component of the stress tensor, however, because then only
transverse and time derivatives act on Gðx; xÞ; which depends only on r. The
discontinuity of the expectation value of the radial-radial component of the stress
tensor is the pressure of the cylindrical wall:

P ¼ hTrriin � hTrriout

¼ � 1
16p3

X1
m¼�1

Z1

�1

dk

Z1

�1

df
kj2

1þ kImðjaÞKmðjaÞ

� K2
mðjaÞI 02m ðjaÞ � I2

mðjaÞK02m ðjaÞ
� �

¼ � 1
16p3

X1
m¼�1

Z1

�1

dk

Z1

�1

df
j
a

d
dja

ln 1þ kImðjaÞKmðjaÞ½ �; ð3:146Þ

where we have again used the Wronskian (3.64) . Regarding ka and fa as the two

Cartesian components of a two-dimensional vector, with magnitude x � ja ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2 þ f2a2

p
; we get the stress on the cylinder per unit length to be

S ¼ 2paP ¼ � 1
4pa3

Z1

0

dx x2
X1

m¼�1

d
dx

ln 1þ kImðxÞKmðxÞ½ �; ð3:147Þ

which possesses the expected Dirichlet limit as k!1: The corresponding
expression for the total Casimir energy per unit length follows by integrating

S ¼ � o

oa
E; ð3:148Þ

that is,

E ¼ � 1
8pa2

Z1

0

dx x2
X1

m¼�1

d
dx

ln 1þ kImðxÞKmðxÞ½ �: ð3:149Þ

This expression, the analog of (3.73) for the spherical case, is, of course,
completely formal, and will be regulated in various ways, for example, with an
analytic or exponential regulator as we will see in the following, or by using zeta-
function regularization [37].

Alternatively, we may compute the energy directly from the general formula
(3.16). To evaluate (3.16) in this case, we use the standard indefinite integrals over
squared Bessel functions. When we insert the above construction of the Green’s
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function (3.144a, b), and perform the integrals over the regions interior and
exterior to the cylinder we obtain (3.149) immediately.

3.5.2 Weak-coupling Evaluation

Suppose we regard k as a small parameter, so let us expand (3.149) in powers of k:
The first term is

Eð1Þ ¼ � k
8pa2

X1
m¼�1

Z1

0

dx x2 d
dx

KmðxÞImðxÞ: ð3:150Þ

The addition theorem for the modified Bessel functions is

K0ðkPÞ ¼
X1

m¼�1
eimð/�/0ÞKmðkqÞImðkq0Þ; q[ q0; ð3:151Þ

where P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ q02 � 2qq0 cosð/� /0Þ

p
: If this is extrapolated to the limit

q0 ¼ q we conclude that the sum of the Bessel functions appearing in (3.150) is
K0ð0Þ; that is, a constant, so there is no first-order contribution to the energy. For a
rigorous derivation of this result, see [37].

We can proceed the same way to evaluate the second-order contribution,

Eð2Þ ¼ k2

16pa2

Z1

0

dx x2 d
dx

X1
m¼�1

I2
mðxÞK2

mðxÞ: ð3:152Þ

By squaring the sum rule (3.151), and taking the limit q0 ! q; we evaluate the
sum over Bessel functions appearing here as

X1
m¼�1

I2
mðxÞK2

mðxÞ ¼
Z2p

0

du
2p

K2
0 ð2x sin u=2Þ: ð3:153Þ

Then changing the order of integration we find that the second-order energy can
be written as

Eð2Þ ¼ � k2

64p2a2

Z2p

0

du

sin2 u=2

Z1

0

dz z K2
0ðzÞ; ð3:154Þ

where the Bessel-function integral has the value 1/2. However, the integral over u
is divergent. We interpret this integral by adopting an analytic regularization based
on the integral [31]

Z2p

0

du sin
u
2

	 
s
¼

2
ffiffiffi
p
p

C 1þs
2

� �
C 1þ s

2

� � ; ð3:155Þ
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which holds for Re s [ � 1: Taking the right-side of this equation to define the u
integral for all s, we conclude that the u integral in (3.154), and hence the second-

order energy Eð2Þ; is zero.

3.5.2.1 Numerical Evaluation

Given that the above argument evidently formally omits divergent terms, it may be

more satisfactory, as in [31], to offer a numerical evaluation of Eð2Þ. (The corre-

sponding argument for Eð1Þ is given in [37].) We can very efficiently do so using
the uniform asymptotic expansions (3.81). Thus the asymptotic behavior of the
product of Bessel functions appearing in (3.152) is

I2
mðxÞK2

mðxÞ�
t2

4m2
1þ

X1
k¼1

rkðtÞ
m2k

 !
: ð3:156Þ

The first three polynomials occurring here are

r1ðtÞ ¼
t2

4
ð1� 6t2 þ 5t4Þ; ð3:157aÞ

r2ðtÞ ¼
t4

16
ð7� 148t2 þ 554t4 � 708t6 þ 295t8Þ; ð3:157bÞ

r3ðtÞ ¼
t6

16
ð36� 1666t2 þ 13775t4 � 44272t6

þ 67162t8 � 48510t10 þ 13475t12Þ:
ð3:157cÞ

We now write the second-order energy (3.152) as

Eð2Þ ¼ � k2

8pa2

(Z1

0

dx x I2
0ðxÞK2

0ðxÞ �
1

4ð1þ x2Þ

� �

� 1
4

lim
s!0

1
2
þ
X1
m¼1

m�s

 !Z1

0

dz z2�s d
dz

1
1þ z2

þ 2
Z1

0

dz z
t2

4

X1
m¼1

X3

k¼1

rkðtÞ
m2k

þ 2
X1
m¼1

Z1

0

dx x I2
mðxÞK2

mðxÞ �
t2

4m2
1þ

X3

k¼1

rkðtÞ
m2k

 !" #)
: ð3:158Þ
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In the final integral z ¼ x=m: The successive terms are evaluated as

Eð2Þ � � k2

8pa2

"
1
4
ðcþ ln 4Þ � 1

4
ln 2p� fð2Þ

48
þ 7fð4Þ

1920
� 31fð6Þ

16128

þ 0:000864þ 0:000006

#
¼ � k2

8pa2
ð0:000000Þ; ð3:159Þ

where in the last term in (3.158) only the m = 1 and 2 terms are significant.
Therefore, we have demonstrated numerically that the energy in order k2 is zero to
an accuracy of better than 10�6:

The astute reader will note that we used a standard, but possibly questionable,
analytic regularization in defining the second term in (3.158), where the initial sum
and integral are only defined for 1\s\2; and then the result is continued to s = 0.
Alternatively, we could follow [31] and insert there an exponential regulator in
each integral of e�xd; with d to be taken to zero at the end of the calculation.
For m 6¼ 0 x becomes mz, and then the sum on m becomes

X1
m¼1

e�mzd ¼ 1
ezd � 1

: ð3:160Þ

Then when we carry out the integral over z we obtain for that term

p
8d
� 1

4
ln 2p: ð3:161Þ

Thus we obtain the same finite part as above, but in addition an explicitly
divergent term

E
ð2Þ
div ¼ �

k2

64a2d
: ð3:162Þ

If we think of the cutoff in terms of a vanishing proper time s; d ¼ s=a; this
divergent term is proportional to 1=a; so the divergence in the energy goes like
L=a; if L is the (very large) length of the cylinder. This is of the form of the shape
divergence encountered in [31].

3.5.2.2 Divergences in the Total Energy

In this subsection we are going to use heat-kernel knowledge to determine the
divergence structure in the total energy. We consider a general cylinder of the
type C ¼ R� Y ; where Y is an arbitrary smooth two dimensional region rather
than merely being the disc. As a metric we have ds2 ¼ dz2 þ dY2 from which
we obtain that the zeta function (density) associated with the Laplacian on C is
(Re s [ 3=2)
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fðsÞ ¼ 1
2p

Z1

�1

dk
X
kY

ðk2 þ kYÞ�s ¼ 1
2p

ffiffiffi
p
p

C s� 1
2

� �
CðsÞ

X
kY

k1=2�s
Y

¼ 1
2p

ffiffiffi
p
p

C s� 1
2

� �
CðsÞ fY s� 1

2

� �
ð3:163Þ

Here kY are the eigenvalues of the Laplacian on Y, and fYðsÞ is the zeta function
associated with these eigenvalues. In the zeta-function scheme the Casimir energy
is defined as

ECas ¼
1
2
l2sf s� 1

2

� �����
s¼0

; ð3:164Þ

which, in the present setting, turns into

ECas ¼
1
2

l2s Cðs� 1Þ
2
ffiffiffi
p
p

C s� 1
2

� � fYðs� 1Þ
�����
s¼0

: ð3:165Þ

Expanding this expression about s ¼ 0; one obtains

ECas ¼
1

8ps
fYð�1Þ þ 1

8p
fYð�1Þ 2 lnð2lÞ � 1½ � þ f0Yð�1Þ
� �

þ OðsÞ: ð3:166Þ

The contribution associated with fYð�1Þ can be determined solely from the
heat-kernel coefficient knowledge, namely

fYð�1Þ ¼ �a4; ð3:167Þ

in terms of the standard 4th heat-kernel coefficient. The contribution coming from
f0Yð�1Þ can in general not be determined. But as we see, at least the divergent term
can be determined entirely by the heat-kernel coefficient.

The situation considered in the Casimir energy calculation is a d-function shell
along some smooth line R in the plane (here, a circle of radius a). The manifolds
considered are the cylinder created by the region inside of the line, and the region
outside of the line; from the results the contribution from free Minkowski space
has to be subtracted to avoid trivial volume divergences (the representation in
terms of the Bessel functions already has Minkowski space contributions sub-
tracted). The d-function shell generates a jump in the normal derivative of the
eigenfunctions; call the jump U (here, U ¼ k=a). The leading heat-kernel coeffi-
cients for this situation, namely for functions which are continuous across the
boundary but which have a jump of the first normal derivative at the boundary,
have been determined in [89]; the relevant a4 coefficient is given in Theorem 7.1,
p. 139 of that reference. The results there are very general; for our purpose there is
exactly one term that survives, namely

a4 ¼ �
1

24p

Z

R

dlU3; ð3:168Þ
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which shows that

Ediv
Cas ¼

1
192p2s

Z

R

dlU3: ð3:169Þ

So no matter along which line the d-function shell is concentrated, the first two
orders in a weak-coupling expansion do not contribute any divergences in the total
energy. But the third order does, and the divergence is given above.

For the example considered, as mentioned, U ¼ k=a is constant, and the inte-
gration leads to the length of the line which is 2pa: Thus we get for this particular
example

Ediv
Cas ¼

1
96ps

k3

a2
: ð3:170Þ

[Compare this with the corresponding divergence for a sphere, (3.85).] This can
be easily checked from the explicit representation we have for the energy. We have
already seen that the first two orders in k identically vanish, while the part of the
third order that potentially contributes a divergent piece is

Eð3Þ ¼ � 1
8pa2

X1
m¼�1

Z1

0

dx x2�2s d
dx

1
3
k3K3

mðxÞI3
mðxÞ: ð3:171Þ

The m = 0 contribution is well behaved about s = 0; while for the remaining
sum using

K3
mðmzÞI3

mðmzÞ� 1
8m3

1

ð1þ z2Þ3=2
; ð3:172Þ

we see that the leading contribution is

Eð3Þ � � k3

12pa2

X1
m¼1

m2�2s
Z1

0

dz z2�2s d
dz

1
8m3

1

ð1þ z2Þ3=2

¼� k3

96pa2
fRð1þ 2sÞ

Z1

0

dz z2�2s d
dz

1

ð1þ z2Þ3=2

¼ k3

96pa2
fRð1þ 2sÞ

Cð2� sÞC sþ 1
2

� �
Cð3=2Þ ¼ k3

96pa2s
þ Oðs0Þ;

ð3:173Þ

in perfect agreement with the heat-kernel prediction (3.170).
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3.5.3 Strong Coupling

The strong-coupling limit of the energy (3.149), that is, the Casimir energy of a
Dirichlet cylinder,

ED ¼ � 1
8pa2

X1
m¼�1

Z1

0

dx x2 d
dx

ln ImðxÞKmðxÞ; ð3:174Þ

was worked out to high accuracy by Gosdzinsky and Romeo [29],

ED ¼ 0:000614794033
a2

: ð3:175Þ

It was later redone with less accuracy by Nesterenko and Pirozhenko [90].
For completeness, let us sketch the evaluation here. We carry out a numerical

calculation (very similar to that of [90]) in the spirit of Sect. 3.5.2.1. We add and
subtract the leading uniform asymptotic expansion (for m ¼ 0 the asymptotic
behavior) as follows:

ED ¼� 1
8pa2

(
� 2

Z1

0

dx x ln 2xI0ðxÞK0ðxÞð Þ � 1
8

1
1þ x2

� �

þ 2
X1
m¼1

Z1

0

dx x2 d
dx

ln 2xImðxÞKmðxÞð Þ � ln
xt

m

	 

� 1

2
r1ðtÞ
m2

� �

� 2
1
2
þ
X1
m¼1

 !Z1

0

dx x2 d
dx

ln 2xþ 2
X1
m¼1

Z1

0

dx x2 d
dx

ln xt

þ
X1
m¼1

Z1

0

dx x2 d
dx

r1ðtÞ
m2
� 1

4
1

1þ x2

� �

þ 1
4

1
2
þ
X1
m¼1

 !Z1

0

dx x2 d
dx

1
1þ x2

)
: ð3:176Þ

In the first two terms we have subtracted the leading asymptotic behavior so the
resulting integrals are convergent. Those terms are restored in the fourth, fifth, and
sixth terms. The most divergent part of the Bessel functions are removed by
the insertion of 2x in the corresponding integral, and its removal in the third term.
(As we’ve seen above, such terms have been referred to as ‘‘contact terms,’’
because if a time-splitting regulator, eifs, is inserted into the frequency integral, a
term proportional to dðsÞ appears, which is zero as long as s 6¼ 0.) The terms
involving Bessel functions are evaluated numerically, where it is observed that the
asymptotic value of the summand (for large m) in the second term is 1=32m2. The
fourth term is evaluated by writing it as
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2 lim
s!0

X1
m¼1

m2�s
Z1

0

dz
z1�s

1þ z2
¼ 2f0ð�2Þ ¼ �fð3Þ

2p2
; ð3:177Þ

while the same argument, as anticipated, shows that the third ‘‘contact’’ term is
zero,5 while the sixth term is

� 1
2

lim
s!0

fðsÞ þ 1
2

� �
1
s
¼ 1

4
ln 2p: ð3:178Þ

The fifth term is elementary. The result then is

ED ¼ 1
4pa2

0:010963� 0:0227032þ 0þ 0:0304485þ 0:21875� 0:229735ð Þ

¼ 1
4pa2

ð0:007724Þ ¼ 0:0006146
a2

;

ð3:179Þ

which agrees with (3.175) to the fourth significant figure.

3.5.3.1 Exponential Regulator

As in Sect. 3.5.2.1, it may seem more satisfactory to insert an exponential regulator
rather than use analytic regularization. Now it is the third, fourth, and sixth terms
in (3.176) that must be treated. The latter is just the negative of (3.161). We can
combine the third and fourth terms to give using (3.160)

� 1

d2 �
2

d2

Z1

0

dz z3

z2 þ d2

d2

dz2

1
ez � 1

: ð3:180Þ

The latter integral may be evaluated by writing it as an integral along the entire
z axis, and closing the contour in the upper half plane, thereby encircling the poles
at id and at 2inp; where n is a positive integer. The residue theorem then gives for
that integral

� 2p

d3 �
fð3Þ
2p2

; ð3:181Þ

so once again we obtain the same finite part as in (3.177). In this way of pro-
ceeding, then, in addition to the finite part in (3.179), we obtain divergent terms

5 This argument is a bit suspect, since the analytic continuation that defines the integrals has no
common region of existence. Thus the argument in the following subsection may be preferable.
However, since that term is properly a contact term, it should in any event be spurious.
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ED
div ¼

1
64a2d

þ 1

8pa2d2 þ
1

4a2d3 ; ð3:182Þ

which, with the previous interpretation for d; implies divergent terms in the
energy proportional to L=a (shape), L (length), and aL (area), respectively.
Such terms presumably are to be subsumed in a renormalization of parameters
in the model. Had a logarithmic divergence occurred [as does occur in weak
coupling in Oðk3Þ] such a renormalization would apparently be impossible—
however, see [37].

3.5.4 Local Energy Density

We compute the energy density from the stress tensor (3.145), or

hT00i ¼ 1
2i

o0o00 þ r � r0
� �

Gðx; x0Þ
����
x0¼x

� n
i
r2Gðx; xÞ

¼ 1
16p3i

Z1

�1

dk

Z1

�1

dx
X1

m¼�1

"
x2 þ k2 þ m2

r2
þ oror0

� �
gðr; r0Þ

����
r0¼r

� 2n
1
r
orrorgðr; rÞ

#
: ð3:183Þ

We omit the free part of the Green’s function, since that corresponds to the
energy that would be present in the vacuum in the absence of the cylinder. When
we insert the remainder of the Green’s function (3.144b), we obtain the following
expression for the energy density outside the cylindrical shell:

uðrÞ ¼hT00 � T00
ð0Þi ¼ �

k
16p3

Z1

�1

df
Z1

�1

dk
X1

m¼�1

I2
mðjaÞ

1þ kImðjaÞKmðjaÞ

� 2x2 þ j2 þ m2

r2

� �
K2

mðjrÞ þ j2K 02m ðjrÞ � 2n
1
r

o

or
r

o

or
K2

mðjrÞ
� �

;

r [ a: ð3:184Þ

The factor in square brackets can be easily seen to be, from the modified Bessel
equation,

2x2K2
mðjrÞ þ 1� 4n

2
1
r

o

or
r

o

or
K2

mðjrÞ: ð3:185Þ

For the interior region, r\a; we have the corresponding expression for the
energy density with Im $ Km:
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3.5.5 Total and Surface Energy

We first need to verify that we recover the expression for the energy found in
Sect. 3.5.1. So let us integrate expression (3.184) over the region exterior of
the cylinder, and the corresponding interior expression over the inside region. The
second term in (3.185) is a total derivative, while the first is exactly the one
evaluated in Sect. 3.5.1. The result is

2p
Z1

0

dr r uðrÞ ¼ � 1
8pa2

X1
m¼�1

Z1

0

dx x2 d
dx

ln 1þ kImðxÞKmðxÞ½ �

� ð1� 4nÞ k
4pa2

Z1

0

dx x
X1

m¼�1

ImðxÞKmðxÞ
1þ kImðxÞKmðxÞ

: ð3:186Þ

The first term is the total energy (3.149), but what do we make of the second
term? In strong coupling, it would represent a constant that should have no
physical significance (a contact term—it is independent of a if we revert to the
physical variable j as the integration variable). In general, however, there is
another contribution to the total energy, residing precisely on the singular surface.
This surface energy is given in general by [60, 91, 92, 55, 50, 45]

Ê ¼ �1� 4n
2i

I
S

dS � rGðx; x0Þ
����
x0¼x

; ð3:187Þ

as given for n ¼ 0 in (3.20a), where the normal to the surface is out of the region in
question. In this case it is easy to see that Ê exactly equals the negative of the
second term in (3.186). This is an example of the general theorem (3.21)

Z
ðdrÞuðrÞ þ Ê ¼ E; ð3:188Þ

that is, the total energy E is the sum of the integrated local energy density and the
surface energy. The generalization of this theorem, (3.187, 3.188), to curved space
is given in [57]. A consequence of this theorem is that the total energy, unlike the
local energy density, is independent of the conformal parameter n: (Note that this
surface energy vanishes when n ¼ 1=4 as Fulling has stressed [93].)

3.5.6 Surface Divergences

We now turn to an examination of the behavior of the local energy density (3.184)
as r approaches a from outside the cylinder. To do this we use the uniform
asymptotic expansion (3.81). Let us begin by considering the strong-coupling
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limit, a Dirichlet cylinder. If we stop with only the leading asymptotic behavior,
we obtain the expression

uðrÞ� � 1
8p3

Z1

0

djj2
X1
m¼1

e�mv

(
�j2 þ ð1� 4nÞ j2 þ m2

r2

� �� �
pt

2m

þ ð1� 4nÞj2 p
2mt

1
z2

)
; ðk!1Þ; ð3:189Þ

where

v ¼ �2 gðzÞ � g z
a

r

	 
h i
; ð3:190Þ

and we have replaced the integral over k and f by one over the polar variable j as
before. Here we ignore the difference between r and a except in the exponent, and
we now replace j by mz=a: Close to the surface,

v� 2
t

r � a

r
; r � a� r; ð3:191Þ

and we carry out the sum over m according to

2
X1
m¼1

m3e�mv� � 2
d3

dv3

1
v
¼ 12

v4
� 3

4
t4r4

ðr � aÞ4
: ð3:192Þ

Then the energy density behaves, as r ! aþ;

uðrÞ� � 3
64p2

1

ðr � aÞ4
Z1

0

dz z½t5 þ t3ð1� 8nÞ�

¼ � 1
16p2

1

ðr � aÞ4
ð1� 6nÞ: ð3:193Þ

This is the universal surface divergence first discovered by Deutsch and
Candelas [61] and seen for the sphere in (3.127a) [74]. It therefore occurs, with
precisely the same numerical coefficient, near a Dirichlet plate [36]. Unless gravity
is considered, it is utterly without physical significance, and may be eliminated
with the conformal choice for the parameter n; n ¼ 1=6:

We will henceforth make this conformal choice. Then the leading divergence
depends upon the curvature. This was also worked out by Deutsch and Candelas
[61]; for the case of a cylinder, that result is

uðrÞ� 1
720p2

1

rðr � aÞ3
; r ! aþ; ð3:194Þ

exactly 1/2 that for a Dirichlet sphere of radius a (3.130) [74], as anticipated
from the general analysis summarized in (3.59). Here, this result may be
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straightforwardly derived by keeping the 1=m corrections in the uniform asymp-
totic expansion (3.81), as well as the next term in the expansion of v; (3.128).

3.5.6.1 Weak Coupling

Let us now expand the energy density (3.184) for small coupling,

uðrÞ ¼ � k
16p3

Z1

�1

df
Z1

�1

dk
X1

m¼�1
I2
mðjaÞ

X1
n¼0

ð�kÞnIn
mðjaÞKn

mðjaÞ

� �j2 þ ð1� 4nÞ j2 þ m2

r2

� �� �
K2

mðjrÞ þ ð1� 4nÞj2K02m ðjrÞ
� �

:

ð3:195Þ

If we again use the leading uniform asymptotic expansions for the Bessel func-
tions, we obtain the expression for the leading behavior of the term of order kn;

uðnÞðrÞ� 1
8p2r4

� k
2

� �nZ1

0

dz z
X1
m¼1

m3�ne�mvtn�1ðt2 þ 1� 8nÞ: ð3:196Þ

The sum on m is asymptotic to

X1
m¼1

m3�ne�mv�ð3� nÞ! tr

2ðr � aÞ

� �4�n

; r ! aþ; ð3:197Þ

so the most singular behavior of the order kn term is, as r ! aþ;

uðnÞðrÞ� ð�kÞn ð3� nÞ!ð1� 6nÞ
96p2rnðr � aÞ4�n : ð3:198Þ

This is exactly the result found for the weak-coupling limit for a d-sphere
(3.127b) [74] and for a d-plane (3.48) [45], so this is also a universal result,
without physical significance. It may be made to vanish by choosing the conformal
value n ¼ 1=6:

With this conformal choice, once again we must expand to higher order. We use
the corrections noted above, in (3.81) and (3.128, 3.129). Then again a quite
simple calculation gives

uðnÞ � ð�kÞnðn� 1Þðnþ 2ÞCð3� nÞ
2880p2rnþ1ðr � aÞ3�n ; r ! aþ; ð3:199Þ

which is analytically continued from the region 1Ren\3: Remarkably, this is
exactly one-half the result found in the same weak-coupling expansion for the
leading conformal divergence outside a sphere (3.131) [74]. Therefore, like
the strong-coupling result (3.194), this limit is universal, depending on the sum of
the principal curvatures of the interface.
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In [37] we considered a annular shell of finite thickness, which as the thickness
d tended to zero gave a finite residual energy in the annulus, in terms of the energy
density u in the annulus,

Eann ¼ 2pdau�ð1� 4nÞ k
4pa2

X1
m¼�1

Z1

0

dja ja
ImðjaÞKmðjaÞ

1þ kImðjaÞKmðjaÞ ¼ Ê; ð3:200Þ

which is exactly the form of the surface energy given by the negative of the second

term in (3.186). In particular, note that the term in Ê of order k3 is, for the conformal
value n ¼ 1=6; exactly equal to that term in the total energy E (3.149): [see (3.171)]

Êð3Þ ¼ Eð3Þ: ð3:201Þ

This means that the divergence encountered in the global energy (3.170) is
exactly accounted for by the divergence in the surface energy, which would seem
to provide strong evidence in favor of the renormalizablity of that divergence.

3.6 Gravitational Acceleration of Casimir Energy

We will here show that a body undergoing uniform acceleration (hyperbolic motion)
imparts the same acceleration to the quantum vacuum energy associated with this
body. This is consistent with the equivalence principle that states that all forms of
energy should gravitate equally. A general variational argument, which, however,
did not deal with the divergent parts of the energy, was given in [22]. This section is
based on [23].

3.6.1 Green’s Functions in Rindler Coordinates

Relativistically, uniform acceleration is described by hyperbolic motion,

z ¼ n cosh s and t ¼ n sinh s: ð3:202Þ

Here the proper acceleration of the particle described by these equations is n�1;
and we have chosen coordinates so that at time t = 0, zð0Þ ¼ n: Here we are going
to consider the corresponding metric

ds2 ¼ �dt2 þ dz2 þ dx2 þ dy2 ¼ �n2ds2 þ dn2 þ dx2 þ dy2: ð3:203Þ

In these coordinates, the d’Alembertian operator takes on cylindrical form

� o

ot

� �2

þ o

oz

� �2

þr2
? ¼ �

1

n2

o

os

� �2

þ 1
n

o

on
n

o

on

� �
þr2

?; ð3:204Þ

where ? refers to the x-y plane.
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3.6.1.1 Green’s Function for One Plate

For a scalar field in these coordinates, subject to a potential VðxÞ; the action is

W ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

p
Lð/ðxÞÞ; ð3:205Þ

where x � ðs; x; y; nÞ represents the coordinates, d4x ¼ ds dn dx dy is the coordi-
nate volume element, glmðxÞ ¼ diagð�n2;þ1;þ1;þ1Þ defines the metric, gðxÞ ¼
det glmðxÞ ¼ �n2 is the determinant of the metric, and the Lagrangian density is

Lð/ðxÞÞ ¼ �1
2

glmðxÞol/ðxÞom/ðxÞ � 1
2

VðxÞ/ðxÞ2; ð3:206Þ

where for a single semitransparent plate located at n1

VðxÞ ¼ kdðn� n1Þ; ð3:207Þ

and k[ 0 is the coupling constant having dimensions of mass. More explicitly we
have

W ¼
Z

d4x
n
2

1

n2

o/
os

� �2

� o/
on

� �2

� r?/ð Þ2�VðxÞ/2

" #
: ð3:208Þ

Stationarity of the action under an arbitrary variation in the field leads to the
equation of motion

� 1

n2

o2

os2
þ 1

n
o

on
n

o

on
þr2

? � VðxÞ
� �

/ðxÞ ¼ 0: ð3:209Þ

The corresponding Green’s function satisfies the differential equation

� � 1

n2

o2

os2
þ 1

n
o

on
n

o

on
þr2

? � VðxÞ
� �

Gðx; x0Þ ¼ dðn� n0Þ
n

dðs� s0Þdðx? � x0?Þ:

ð3:210Þ

Since in our case VðxÞ has only n dependence we can write this in terms of the
reduced Green’s function gðn; n0Þ;

Gðx; x0Þ ¼
Z1

�1

dx
2p

Z
d2k?

ð2pÞ2
e�ixðs�s0Þeik?�ðx�x0Þ?gðn; n0Þ; ð3:211Þ

where gðn; n0Þ satisfies

� 1
n

o

on
n

o

on
þ x2

n2 � k2
? � VðxÞ

� �
gðn; n0Þ ¼ dðn� n0Þ

n
: ð3:212Þ
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We recognize this equation as defining the semitransparent cylinder problem
discussed in Sect. 3.5 [37], with the replacements

a! n1; m! f ¼ �ix; j! k ¼ k?; k! kn1; ð3:213Þ

so that from (3.144a, b) we may immediately write down the solution in terms of
modified Bessel functions,

gðn; n0Þ ¼ Ifðkn\ÞKfðkn[ Þ �
kn1K2

f ðkn1ÞIfðknÞIfðkn0Þ
1þ kn1Ifðkn1ÞKfðkn1Þ

; n; n0\n1; ð3:214aÞ

¼ Ifðkn\ÞKfðkn[ Þ �
kn1I2

f ðkn1ÞKfðknÞKfðkn0Þ
1þ kn1Ifðkn1ÞKfðkn1Þ

; n; n0[ n1: ð3:214bÞ

Note that in the strong-coupling limit, k!1; this reduces to the Green’s
function satisfying Dirichlet boundary conditions at n ¼ n1:

3.6.1.2 Minkowski-space Limit

To recover the Minkowski-space Green’s function for the semitransparent plate,
we use the uniform asymptotic expansion (Debye expansion), based on the limit

n!1; n1 !1; n� n1 finite ; f!1; f=n1 finite : ð3:215Þ

For large f we use (3.81) with x ¼ fz ¼ kn; for example. Expanding the above
expressions (3.214a, b) around some arbitrary point n0; chosen such that the dif-
ferences n� n0; n0 � n0; and n1 � n0 are finite, we find for the leading term, for
example,

ffiffiffiffiffiffi
nn0

p
IfðknÞKfðkn0Þ �

1
2j

ejðn�n0Þ; ð3:216Þ

where j2 ¼ k2 þ f̂2; f̂ ¼ f=n0: In this way, taking for simplicity n0 ¼ n1; we find
the Green’s function for a single plate in Minkowski space,

n1gðn; n0Þ ! gð0Þðn; n0Þ ¼ 1
2j

e�jjn�n0 j � k
kþ 2j

1
2j

e�jjn�n1je�jjn0�n1j: ð3:217Þ

3.6.1.3 Green’s Function for Two Parallel Plates

For two semitransparent plates perpendicular to the n-axis and located at n1; n2;
with couplings k1 and k2; respectively, we find the following form for the Green’s
function:

gðn; n0Þ ¼ I\K [ �
k1n1K2

1 þ k2n2K2
2 � k1k2n1n2K1K2ðK2I1 � K1I2Þ

D
II0; n; n0\n1;

ð3:218aÞ
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¼ I\K[ �
k1n1I2

1 þ k2n2I2
2 þ k1k2n1n2I1I2ðI2K1 � I1K2Þ

D
KK0; n; n0[ n2;

ð3:218bÞ

¼ I\K[ �
k2n2K2

2ð1þ k1n1K1I1Þ
D

II0 � k1n1I2
1ð1þ k2n2K2I2Þ

D
KK0

þ k1k2n1n2I2
1K2

2

D
ðIK0 þ KI0Þ; n1\n; n0\n2;

ð3:218cÞ

where

D ¼ ð1þ k1n1K1I1Þð1þ k2n2K2I2Þ � k1k2n1n2I2
1 K2

2 ; ð3:219Þ

and we have used the abbreviations I1 ¼ Ifðkn1Þ; I ¼ IfðknÞ; I0 ¼ Ifðkn0Þ; etc.
Again we can check that these formulas reduce to the well-known Minkowski-

space limits. In the n0 !1 limit, the uniform asymptotic expansion (3.81) gives,
for n1\n; n0\n2

n0gðn; n0Þ ! gð0Þðn; n0Þ ¼ 1
2j

e�jjn�n0j þ 1

2j~D

�
k1k2

4j2
2 cosh jðn� n0Þ

� k1

2j
1þ k2

2j

� �
e�jðnþn0�2n2Þ � k2

2j
1þ k1

2j

� �
ejðnþn0�2n1Þ

�
;

ð3:220Þ

where (a ¼ n2 � n1)

~D ¼ 1þ k1

2j

� �
1þ k2

2j

� �
e2ja � k1k2

4j2
; ð3:221Þ

which is exactly the expected result (3.7a, 3.8). The correct limit is also obtained in
the other two regions.

3.6.2 Gravitational Acceleration of Casimir Apparatus

We next consider the situation when the plates are forced to ‘‘move rigidly’’ [94]
in such a way that the proper distance between the plates is preserved. This is
achieved if the two plates move with different but constant proper accelerations.

The canonical energy-momentum or stress tensor derived from the action
(3.205) is

TabðxÞ ¼ oa/ðxÞob/ðxÞ þ gabðxÞLð/ðxÞÞ; ð3:222Þ

where the Lagrange density includes the d-function potential. The components
referring to the pressure and the energy density are

T33ðxÞ ¼
1
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n2
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r?/ð Þ2� 1
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VðxÞ/2; ð3:223aÞ
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1
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2
VðxÞ/2: ð3:223bÞ

The latter may be written in an alternative convenient form using the equations
of motion (3.209):
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on
/n

o

on
/

� �
þ n2

2
r? � ð/r?/Þ; ð3:224Þ

which is the appropriate version of (3.19) here. The force density is given by [95]
�rmTm

k; or

fk ¼ �
1ffiffiffiffiffiffiffi�g
p omð

ffiffiffiffiffiffiffi�g
p

Tm
kÞ þ

1
2

Tlmokglm; ð3:225Þ

or in Rindler coordinates

fn ¼ �
1
n
onðnTnnÞ � nT00: ð3:226Þ

When we integrate over all space to get the force, the first term is a surface term
which does not contribute6:

F ¼
Z

dn nfn ¼ �
Z

dn

n2T00: ð3:227Þ

This could be termed the Rindler coordinate force per area, defined as the
change in momentum per unit Rindler coordinate time s per unit cross-sectional
area. If we multiply F by the gravitational acceleration g we obtain the gravita-
tional force per area on the Casimir energy. This result (3.227) seems entirely
consistent with the equivalence principle, since n�2T00 is the energy density. Using
the expression (3.224) for the energy density, taking the vacuum expectation

value, and rescaling f ¼ f̂n; we see that the gravitational force per cross sectional
area is merely

6 Note that in previous works, such as [45, 46], the surface term was included, because the
integration was carried out only over the interior and exterior regions. Here we integrate over the
surface as well, so the additional so-called surface energy is automatically included. This is
described in the argument leading to (3.20a). Note, however, if (3.226) is integrated over a small
interval enclosing the d-function potential,

Zn1þ�

n1��

dnnfn ¼ �n1DTnn;

where DTnn is the discontinuity in the normal-normal component of the stress density. Dividing
this expression by n1 gives the usual expression for the force on the plate.
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F ¼
Z

dnn
Z

df̂d2k

ð2pÞ3
f̂2gðn; nÞ: ð3:228Þ

This result for the energy contained in the force equation (3.228) is an
immediate consequence of the general formula for the Casimir energy (3.16) [38].

Alternatively, we can start from the following formula for the force density for
a single semitransparent plate, following directly from the equations of motion
(3.209),

fn ¼
1
2
/2onkdðn� n1Þ: ð3:229Þ

The vacuum expectation value of this yields the force in terms of the Green’s
function,

F ¼ �k
1
2

Z
df d2k

ð2pÞ3
on½ngðn; nÞ�

����
n¼n1

: ð3:230Þ

3.6.2.1 Gravitational Force on a Single Plate

For example, the force on a single plate at n1 is given by

F ¼ �on1

1
2

Z
df d2k

ð2pÞ3
ln½1þ kn1Ifðkn1ÞKfðkn1Þ�; ð3:231Þ

Expanding this about some arbitrary point n0; with f ¼ f̂n0; using the uniform

asymptotic expansion (3.81), we get (j2 ¼ k2 þ f̂2)

n1Ifðkn1ÞKfðkn1Þ�
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2f
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðkn1=fÞ2
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1� k2

j2

n1 � n0

n0

� �
: ð3:232Þ

From this, if we introduce polar coordinates for the k-f̂ integration, the coor-
dinate force is

F ¼� 1
2

on1

n0
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0

dj j2 k
2jþ k
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1þ y=ka
; ð3:233Þ
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where for example

hf̂2i ¼ 1
2

Z1

�1

d cos h cos2 hj2 ¼ 1
3

j2: ð3:234Þ

The divergent expression (3.233) is just the negative of the quantum vacuum
energy of a single plate, seen in (3.17) and (3.43).

3.6.2.2 Parallel Plates Falling in a Constant Gravitational Field

In general, we have two alternative forms for the gravitational force on the
two-plate system:

F ¼ �ðon1
þ on2

Þ 1
2

Z
df d2k

ð2pÞ3
ln D; ð3:235Þ

D given in (3.219), which is equivalent to (3.228). (In the latter, however, bulk
energy, present if no plates are present, must be omitted.) From either of the above
two methods, we find the coordinate force [as defined below (3.227)] is given by

F ¼ � 1
4p2

Z1

0

djj2 ln D0; ð3:236Þ

where D0 ¼ e�2ja ~D; ~D given in (3.221). The integral may be easily shown to be

F ¼ 1
96p2a3
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0

dyy3
1þ 1

yþk1aþ 1
yþk2a

y
k1aþ 1
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ey � 1

� 1
96p2a3

Z1

0

dyy2 1
y

k1aþ 1
þ 1

y
k2aþ 1

" # ð3:237aÞ

¼ �ðEc þ Ed1 þ Ed2Þ; ð3:237bÞ

which is just the negative of the Casimir energy of the two semitransparent plates
including the divergent pieces—See (3.17) [45, 46]. Note that Edi; i ¼ 1; 2; are
simply the divergent energies (3.233) associated with a single plate.

3.6.2.3 Renormalization

The divergent terms in (3.237b) simply renormalize the masses (per unit area) of
each plate:
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Etotal ¼ m1 þ m2 þ Ed1 þ Ed2 þ Ec

¼ M1 þM2 þ Ec;
ð3:238Þ

where mi is the bare mass of each plate, and the renormalized mass is Mi ¼
mi þ Edi: Thus the gravitational force on the entire apparatus obeys the equiva-
lence principle

gF ¼ �gðM1 þM2 þ EcÞ: ð3:239Þ

The minus sign reflects the downward acceleration of gravity on the surface of the
earth. Note here that the Casimir interaction energy Ec is negative, so it reduces
the gravitational attraction of the system.

3.6.3 Summary

We have found, in conformation with the result given in [22], an extremely simple
answer to the question of how Casimir energy accelerates in a weak gravitational
field: Just like any other form of energy, the gravitational force F divided by the
area of the plates is

F

A
¼ �gEc: ð3:240Þ

This is the result expected by the equivalence principle, but is in contradiction
to some earlier disparate claims in the literature [95–99]. Bimonte et al. [100] now
agree completely with our conclusions. This result perfectly agrees with that found
by Saharian et al. [101] for Dirichlet, Neumann, and perfectly conducting plates
for the finite Casimir interaction energy. The acceleration of Dirichlet plates fol-
lows from our result when the strong coupling limit k!1 is taken. What makes
our conclusion particularly interesting is that it refers not only to the finite part of
the Casimir interaction energy between semitransparent plates, but to the divergent
parts as well, which are seen to simply renormalize the gravitational mass of each
plate, as they would the inertial mass. The reader may object that by equating
gravitational force with uniform acceleration we have built in the equivalence
principle, and so does any procedure based on Einstein’s equations; but the real
nontriviality here is that quantum fluctuations obey the same universal law. The
reader is also referred to the important work on this subject by Jaekel and Reynaud
[102], and extensive references therein.

3.7 Conclusions

In this review, I have illustrated the issues involved in calculating self-energies in
the simple context of massless scalar fields interacting with d-function potentials,
so-called semitransparent boundaries. This is not as unrealistic as it might sound,
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since in the strong coupling limit this yields Dirichlet boundary conditions, and by
using derivative of d-function boundaries, we can recover Neumann boundary
conditions. Thus, where the boundaries admit the separation into TE and TM
modes, we can recover perfect-conductor boundaries imposed on electromagnetic
fields.

We have examined both divergences occurring in the total energy, and diver-
gences which appear in the local energy density as boundaries are approached. The
latter divergences often have little to do with the former, because the local
divergences may cancel across the boundaries, and they typically depend on the
form (canonical or conformal, for example) of the local stress-energy tensor. The
global divergences apparently can always be uniquely isolated, leaving a unique
finite self-energy; in some cases at least the divergent parts can be absorbed into a
renormalization of properties of the boundaries, such as their masses. It is expected
that if the ideal boundaries were represented as a solitonic structure arising from a
background field, this ‘‘renormalization’’ idea could be put on a more rigorous
footing.

Evidence for the consistency of this view occurs in the parallel plate configu-
ration, where we show that the finite interaction energy and the divergent self-
energies of each plate exhibit the same inertial and gravitational properties, that is,
are each consistent with the equivalence principle. Thus it is indeed consistent to
absorb the self-energies into the masses of each plate. We hope to prove in the
future that this renormalization consistency is a general feature.

In spite of the length of this review, we have barely scratched the surface. In
particular, we have not discussed how the divergent contributions of the local
stress tensor are consistent with Einstein’s equations [103]. We have also only
discussed simple separable geometries, where the equations for the Green’s
functions can be solved on both the inside and the outside of the boundaries. This
excludes the extensive work on rectangular cavities, where only the sum over
interior eigenvalues can be carried out [16–19, 104]. There are some numerical
coincidences, for example between the energy for a sphere and a cube, but since
divergences have been simply omitted by zeta-function regularization, the sig-
nificance of the latter results remains unclear. There are a few other examples
where the interior Casimir contribution can be computed exactly, while the
exterior problem cannot be solved, an example being a cylinder with cross section
of an equilateral triangle. Such results seem more problematic than those we have
discussed here.

We also have not discussed semiclassical and numerical techniques. For
example, there is the extremely interesting work of Schaden [105], who computes
a very accurate approximation for the Casimir energy of a spherical shell using
optical path techniques. The same technique gives zero for the cylindrical shell,
not the attractive value found in [27], which is not surprising. Not unrelated to this
technique is the exact worldline method of Gies and collaborators [106–108],
which is able to capture edge effects. The optical path work of Scardicchio and
Jaffe [109–111] should also be cited, although it is largely restricted to examining
the forces between distinct bodies. This review also does not refer to the

90 K. A. Milton



remarkable progress in numerical techniques, some of which are related to the
multiple scattering approach—for some recent references see [112, 113], (See also
the chapters by Rahi et al., by Johnson and by Lambrecht et al. in this volume for
additional discussions about the multiple scattering approach)—, which however,
have not yet been turned to examining self-interactions.

The central issue is the meaning of Casimir self-energy, and how, in principle,
it might be observed. Probably the right direction to address such issues is in terms
of quantum corrections to solitons—for example, see [114–116]. The issues being
considered go to the very heart of renormalized quantum field theory, and likely to
the meaning and origin of mass, a subject about which we in fact know very little.
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Chapter 4
Casimir Effect in the Scattering
Approach: Correlations Between Material
Properties, Temperature and Geometry

Astrid Lambrecht, Antoine Canaguier-Durand,
Romain Guérout and Serge Reynaud

Abstract We present calculations of the quantum and thermal Casimir interaction
between real mirrors in electromagnetic fields using the scattering approach.
We begin with a pedagogical introduction of this approach in simple cases where
the scattering is specular. We then discuss the more general case of stationary
arbitrarily shaped mirrors and present in particular applications to two geometries
of interest for experiments, that is corrugated plates and the plane-sphere geom-
etry. The results nicely illustrate the rich correlations existing between material
properties, temperature and geometry in the Casimir effect.

4.1 Introduction

The Casimir effect [1] is an observable effect of vacuum fluctuations in the
mesoscopic world, to be tested with the greatest care as a crucial prediction of
quantum field theory [2–8]. It also constitutes a fascinating interface between
quantum field theory and other important aspects of fundamental physics, for
example through its connection with the problem of vacuum energy [9–11].
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Casimir physics plays an important role in the tests of gravity at sub-millimeter
ranges [12, 13]. Strong constraints have been obtained in short range Cavendish-
like experiments [14]. A hypothetical new force of Yukawa-like form could not
exceed the gravitational force in the range above 56 lm: For ranges of the order of
the micrometer, similar tests are performed by comparing the results of Casimir
force measurements with theoretical predictions [15–17]. At even shorter scales,
those tests can be performed using atomic [18] or nuclear [19] force measure-
ments. In any of these short-range gravity tests, a new hypothetical force would
appear as a difference between the experimental result Fexp and the theoretical
prediction Fth: This implies that Fth and Fexp have to be assessed independently
from each other and necessarily forbids use of the theory-experiment comparison
for proving (or disproving) some specific experimental result or theoretical model.

Finally, the Casimir force and the closely related Van der Waals force are
dominant at micron or sub-micron distances, entailing their strong connections
with various important domains, such as atomic and molecular physics, condensed
matter and surface physics, chemical and biological physics, micro- and nano-
technology [20].

4.2 Comparison of Casimir Force Measurements with Theory

Casimir calculated the force between a pair of perfectly smooth, flat and parallel
plates in the limit of zero temperature and perfect reflection which led him to the
universal expressions for the force FCas and energy ECas

FCas ¼ �
�hcp2A

240L4
; ECas ¼ �

�hcp2A

720L3
: ð4:1Þ

with L the mirrors’ separation, A their surface, c the speed of light and �h the Planck
constant. The universality of these ideal Casimir formulas is explained by the
saturation of the optical response of perfect mirrors which exactly reflect 100% of
the incoming fields. This idealization does not correspond to any real mirror.
In fact, the effect of imperfect reflection is large in most experiments, and a precise
knowledge of its frequency dependence is essential for obtaining reliable theo-
retical predictions to be compared with Casimir force measurements [21–35]. See
also the chapter of van Zwol et al. in this volume for additional discussions of
characterization of optical properties in Casimir force experiments.

4.2.1 The Description of Metallic Mirrors

The most precise experiments are performed with metallic mirrors which are good
reflectors at frequencies smaller than their plasma frequency xP: Their optical
response at a frequency x is described by a reduced dielectric function written as
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e x½ � ¼ �e x½ � þ r x½ �
�ix

; r x½ � ¼ x2
P

c� ix
: ð4:2Þ

The function �e x½ � represents the contribution of interband transitions and it is
regular at the limit x! 0: Meanwhile r x½ � is the reduced conductivity, measured
as a frequency (the SI conductivity is �0r;) which describes the contribution of the
conduction electrons.

A simplified description corresponds to the lossless limit c! 0 often called
the plasma model. As c is much smaller than xP for good conductors, this simple
model captures the main effect of imperfect reflection. However it cannot be
considered as an accurate description since a much better fit of tabulated optical
data is obtained with a non null value of c [36, 37]. Furthermore, the Drude model,
with c 6¼ 0; meets the important property of ordinary metals which have a finite

static conductivity r0 ¼ x2
P

c ; in contrast to the lossless limit which corresponds to

an infinite value for r0:
Another correction to the Casimir expressions is associated with the effect of

thermal fluctuations [38–41]. Boström and Sernelius have remarked that the small
non zero value of c had a significant effect on the force evaluation at ambient
temperature [42]. This significant difference is attributed to the vanishing contri-
bution of TE modes at zero frequency for dissipative mirrors entailing that for the
Casimir force, contrary to the dielectric function, there is no continuity from the
Drude to the plasma model at the limit of a vanishing relaxation. The ratio between
the predictions evaluated at c ¼ 0 and c 6¼ 0 even reaches a factor of 2 at the limit
of large temperatures or large distances. Unfortunately it has not yet been possible
to test this striking prediction since the current experiments do not explore this
domain.

The current status of Casimir experiments appears to favor theoretical predic-
tions obtained with the lossless plasma model c ¼ 0 rather than those corre-
sponding to the Drude model with c 6¼ 0 as one might have expected (see Fig. 4.1
in [29]). See the chapter by Decca et al. in this volume for additional discussions
of this observation. We thus have to face a discrepancy between theory and
experiment. This discrepancy may have various origins, in particular artifacts in
the experiments or inaccuracies in the calculations. They may also come from yet
unmastered differences between the situations studied in theory and the experi-
mental realizations.

These remarks have led to a blossoming of papers devoted to the thermal effect
on the Casimir force, for reviews see e.g. [43–47]. It is worth emphasizing that
microscopic descriptions of the Casimir interaction between two metallic bulks
lead to predictions agreeing with the lossy Drude model rather than the lossless
plasma model at the limit of large temperatures or large distances [48–50].

It is also important to note that the Drude model leads to a negative contribution of
the Casimir interaction to entropy, in contrast to the plasma model [51]. There is no
principle inconsistency with the laws of thermodynamics at this point since the
negative contribution is nothing but a difference of entropies (see for example [52]).
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4.2.2 The Role of Geometry

The geometry plays an important role in the context of theory/experiment com-
parison for Casimir forces. Precise experiments are indeed performed between a
plane and a sphere whereas most exact calculations are devoted to the geometry of
two parallel plates. The estimation of the force in the plane-sphere geometry thus
involves the so-called Proximity Force Approximation (PFA) [53] which amounts
to averaging the force calculated in the parallel-plates geometry over the distri-
bution of local inter-plate distances, the force being deduced from the Lifshitz
formula [54, 55], the meaning of which will be discussed below.

This trivial treatment of geometry cannot reproduce the rich interconnection
expected to take place between the Casimir effect and geometry [56–59]. In the
plane-sphere geometry in particular, the PFA can only be valid when the radius
R is much larger than the separation L [60–62]. But even if this limit is met in
experiments, the PFA gives no information about its accuracy for a given ratio of
L=R and how this accuracy depends on the properties of the mirror, on the distance
or temperature.

Answers to these questions can only be obtained by pushing the theory beyond
the PFA, which has been done in the past few years [63–67]. A multipolar
expansion of the Casimir effect between perfect mirrors in electromagnetic vac-
uum was proposed in [68, 69]. These calculations have now been performed for
plane and spherical metallic surfaces coupled to electromagnetic vacuum, at zero
[70] or non zero temperature [71, 72], which has opened the way to a comparison
with theory of the only experimental study devoted to a test of PFA in the plane-
sphere geometry [73]. As we will see at the end of this article, the features of the
thermal Casimir force mentioned in Sect. 4.2 are considerably altered when the
geometry is properly taken into account. The factor of 2 between the force values
within Drude and plasma model is reduced to a factor of 3/2, decreasing even more
below this value when small spheres are considered. Negative entropies are not
only found for the Drude model but also for perfect reflector and plasma models,
which means that negative contributions of the Casimir interaction to entropy can
be found even in the absence of dissipation.

Another specific geometry of great interest, that we will present in the fol-
lowing, is that of surfaces with periodic corrugations. As lateral translation sym-
metry is broken, the Casimir force contains a lateral component which is smaller

L

A L
2

Fig. 4.1 Two plane parallel
plates at distance L facing
each other constitute the
Casimir cavity
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than the normal one, but has nevertheless been measured in dedicated experiments
[74, 75]. Calculations beyond the PFA were first performed with the simplifying
assumptions of perfect reflection [76] or shallow corrugations [77–79]. As
expected, the PFA was found to be accurate only in the limit of large corrugation
wavelengths. Very recently, experiments have been able to probe the beyond-PFA
regime [80, 81] and exact calculations of the forces between real mirrors with deep
corrugations [82, 83] have been performed. More discussions on these topics will
be presented below.

4.3 The Scattering Approach

In the following, we will focus our attention on the scattering approach, which is
an efficient and elegant method for addressing the aforementioned questions.

This method has been used for years for describing the optical properties of
non-perfectly reflecting mirrors in terms of scattering amplitudes [84, 85]. These
scattering amplitudes are often deduced from Fresnel reflection amplitudes cal-
culated for mirrors described by local dielectric response functions, in which case
the expression of the Casimir force is reduced to the Lifshitz expression [54, 55].
However the scattering approach is much more general than the Lifshitz one since
real mirrors are always described by some scattering amplitudes but not neces-
sarily by local dielectric response functions. This point will be discussed in more
detail below.

The interest in the scattering approach has considerably increased since it has
become clear that it is also an extremely efficient method for calculating the
Casimir effect in non-trivial geometries. This was realized by several groups
employing different theoretical techniques and using different notations (see [86]
for an historial overview). Besides the already quoted papers, one may cite the
following references which used different versions of the scattering approach [64,
87–92] or alternative methods [93–98]. This topic has seen recently an impressive
number of new applications proposed, among which one may cite [99–106]. See
also the chapter of Rahi et al. in this volume for additional discussions of the
scattering approach in Casimir physics.

An early application of the scattering approach to non-trivial geometries and
non-perfect reflectors was developed in [107, 108] to calculate the roughness
correction to the Casimir force between two planes, in a perturbative expansion
with respect to the roughness amplitude. The same perturbative formalism was
also applied to compute the lateral Casimir force [77–79] and the Casimir torque
[109] between two corrugated surfaces made of real material, and then to derive
the Casimir-Polder potential for an atom near a corrugated surface [111, 112].

Let us recall that results applicable to the non-retarded case have been available
[113, 114] before those corresponding to the full retarded theory, and also that the
scattering theory has been used for a long time for studying the Casimir-Polder
force between atoms and molecules [115, 116].
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We begin the review of the scattering approach by an introduction considering
the two simple cases of the Casimir force between two scatterers on a 1-dimen-
sional line and between two parallel plates coupled through specular scattering to
3-dimensional electromagnetic fields [84]. We then address the general case of
non-specular scatterers in 3-dimensional electromagnetic fields [8].

4.3.1 Mirrors on a 1-Dimensional Line

The first case corresponds to the quantum field theory in 2-dimensional spacetime
(1-d space plus time). In this simple case, we have to consider only two scalar
fields counter-propagating along opposite directions. The results summarized
below are drawn from a series of papers devoted to the study of static or dynamic
Casimir force between mirrors coupled to these scalar fields [9, 84, 117–125].
For example, it was established in [118] that the Casimir energy does contribute to
the inertia of the cavity as it should according to the principles of relativity.

In this simple model, a mirror M1 at rest at position q1 is described by a 292
scattering matrix S1 containing reflection and transmission amplitudes r1 and t1

S1 ¼ t1 r1e�2ixq1=c

r1e2ixq1=c t1

� �
: ð4:3Þ

Two mirrors M1 and M2 at rest at positions q1 and q2 form a Fabry–Perot cavity
described by a global scattering matrix S12 which can be deduced from the ele-
mentary matrices S1 and S2 associated with the two mirrors.

S12 ¼
1
d

t1t2 dr2e�ixL=c þ t2
2r1eixL=c

dr1e�ixL=c þ t2
1r2eixL=c t1t2

� �
: ð4:4Þ

The denominator d is given by

d ¼ 1� r1r2e2ixL=c; L � q2 � q1; ð4:5Þ

and its zeros (the poles of S12) represent the resonances of the cavity. It turns out
that the forthcoming discussion of the Casimir effect depend only on the expres-
sion of d and not on all the other details in the form of S12: The reason explaining
this property is the following relation between the determinants of the S–matrices
(all supposed to be unitary in the simple model):

det S12 ¼ det S1ð Þ det S2ð Þ d�

d

� �
: ð4:6Þ

From this relation, it is easy to derive the Casimir free energy as a variation of
field energy (vacuum energy at T = 0, vacuum plus thermal energy otherwise). The
presence of a scatterer indeed shifts the field modes and thus induces a variation of
the global field energy. The Casimir free energy is then obtained as the variation of
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field energy in presence of the cavity corrected by the effects of each mirror taken
separately [84]

F � dF field;12 � dF field;1 � dF field;2 ¼ �
Z1

0

dx
2p

N�hD: ð4:7Þ

D is a function of the frequency x representing the phase-shift produced by the
Fabry–Perot cavity, again corrected by the effects of each mirror taken separately

DðxÞ ¼ ln detS12 � ln detS1 � ln detS2

i
¼ 1

i
ln

d�

d

� �
: ð4:8Þ

N is the mean number of thermal photons per mode, given by the Planck law,
augmented by the term 1

2 which represents the contribution of the vacuum

NðxÞ ¼ 1
2
þ 1

exp �hx
kBT � 1

¼ 1

2 tanh �hx
2kBT

: ð4:9Þ

This phase-shift formula can be given alternative interpretations [84]. In par-
ticular, when the Casimir force F is derived from the free energy

F ¼ �oFðL; TÞ
oL

¼
Z1

0

dx
p

N�hx
c

f þ f �ð Þ ¼
Z1

0

dx
p

N�hx
c

g� 1ð Þ;

f � re2ixL=c

1� re2ixL=c
; g �

1� re2ixL=c
�� ��2

1� re2ixL=cj j2
;

ð4:10Þ

it is seen as resulting from the difference of radiation pressures exerted onto the
inner and outer sides of the mirrors by the field fluctuations. For each field mode at
frequency x; N�hx

c represents the field momentum while g is the ratio of fluctuation
energies inside and outside the Fabry–Perot cavity.

Using the analytic properties of the causal function ln d; the Casimir free energy
can also be written as an integral over imaginary frequencies x ¼ in (Wick
rotation)

F ¼ �h

Z
dn
2p

cot
�hn

2kBT

� �
ln dðinÞ: ð4:11Þ

Using the pole decomposition of the cotangent function and the analytic properties
of ln d, this expression can finally be written as a sum over Matsubara frequencies

F ¼ kBT
X

m

0 ln dðinmÞ; nm �
2pmkBT

�h
: ð4:12Þ

The Matsubara sum
P0

m is the sum over positive integers m with m = 0 counted
with a weight 1

2 :
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For completeness, let us recall also that the contribution to entropy of the
Casimir interaction is simply written as

S � �oFðL; TÞ
oT

: ð4:13Þ

Hence, it is defined as a difference of entropies just as the free energy F has been
defined in (4.7) above as a difference of free energies.

4.3.2 Specular Reflection in 3-d Space

The same lines of reasoning can be followed when studying the case of two
specularly reflecting mirrors coupled to electromagnetic fields in 3-dimensional
space. The geometry is sketched in Fig. 4.1 with two plane parallel mirrors
aligned along the transverse directions x and y (longitudinal direction denoted
by z).

Due to the symmetry of this configuration, the frequency x; the transverse
vector k � kx; ky

� �
and the polarization p ¼ TE;TM are preserved by all scattering

processes. The mirrors are described by reflection and transmission amplitudes
which depend on these scattering parameters. We assume thermal equilibrium for
the whole ‘‘cavity + fields’’ system, and proceed with the derivation as in the
simpler case of a 1-dimensional space. Some elements have to be treated with
greater care now [85, 8]. First there is a contribution of evanescent waves besides
that of ordinary modes freely propagating outside and inside the cavity and it has
to be taken carefully into account. The properties of the evanescent waves are
described through an analytical continuation of those of ordinary ones, using the
well defined analytic behavior of the scattering amplitudes. Then dissipation inside
the mirrors may also play a role which implies considering the additional fluctu-
ation lines coming along with dissipation [8, 85].

At the end of this derivation the free energy may still be written as a Matsubara
sum

F ¼ kBT
X

k

X
p

X
m

0 ln dðinm; k; pÞ; nm �
2pmkBT

�h
;

X
k

� A

Z
d2k

4p2
� A

Z
dkxdky

4p2
: ð4:14Þ

P
k is the sum over transverse wavevectors with A the area of the plates,

P
p the

sum over polarizations and
P

m
0 the same Matsubara sum as in the 1-d case.

The denominator is now written in terms of the result j of Wick rotation on the
longitudinal wavevector kz
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dðin; k; pÞ ¼1� r1ðin; k; pÞr2ðin; k; pÞ exp�2jL;

j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ n2

c2

s
:

ð4:15Þ

This expression reproduces the ideal Casimir formula (4.1) in the limits of perfect
reflection r1r2 ! 1 and zero temperature T ! 0: It is valid and regular at thermal
equilibrium at any temperature and for any optical model of mirrors obeying cau-
sality and high frequency transparency properties [8, 84, 85]. It can thus be used for
calculating the Casimir force between arbitrary mirrors, as soon as the reflection
amplitudes are specified. These amplitudes are commonly deduced from models of
mirrors, the simplest of which is the well known Lifshitz model [54, 55] which
corresponds to semi-infinite bulk mirrors characterized by a local dielectric
response function eðxÞ and reflection amplitudes deduced from the Fresnel law

rTEðk; nÞ ¼
j� jt

jþ jt
; rTMðk; nÞ ¼

ej� jt

ejþ jt
; ð4:16Þ

jt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ e

n2

c2

s
: ð4:17Þ

e is the dielectric function (4.2) and jt denotes the result of Wick rotation of the
longitudinal wavevector inside the medium.

In the most general case, the optical response of the mirrors cannot be described
by a local dielectric response function. The expression (4.14) of the free energy is
still valid in this case with the reflection amplitudes to be determined from
microscopic models of mirrors. Recent attempts in this direction can be found for
example in [126–133].

At this stage, several remarks can be addressed to the readers interested in
historical details:

• The Lifshitz expression was not written in terms of reflection amplitudes until
Kats noticed that this formulation was natural [134]. To our best knowledge, the
first appearance of an expression of the Casimir effect in terms of reflection
amplitudes corresponding to an arbitrary microscopic model (not necessarily a
dielectric response function) is in [84].

• The fact that the expression (4.14) of the free energy is valid for lossy as well as
lossless mirrors is far from obvious. In the lossy case, one has indeed to take
into account the contributions of fluctuations coming from the additional modes
associated with dissipation. This property has been demonstrated with an
increasing range of validity in [84, 85] and [8] (see also [135] for a theorem
playing a crucial role in this demonstration).

• The question had been asked in [43] whether the regularity conditions needed
to write the Matsubara sum were met for the Drude model which shows dis-
continuities at n! 0: This question has been answered positively in [52].
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4.3.3 The Non-specular Scattering Formula

We now present a more general scattering formula allowing one to calculate
the Casimir force between stationary objects with arbitrary shapes. We restrict
our attention to the case of disjoint objects, exterior to each other, which
corresponds to the configuration initially considered by Casimir (for interior
configurations, which may be treated with similar techniques, see for example
[136–139]).

The main generalization with respect to the already discussed specular cases is
that the scattering matrix S has now to account for non-specular reflection. It is
therefore a much larger matrix which mixes different wavevectors and polariza-
tions while preserving frequency as long as the scatterers are stationary [8].
Of course, the non-specular scattering formula is the generic one while specular
reflection can only be an idealization.

As previously, the Casimir free energy can be written as the sum of all the
phase-shifts contained in the scattering matrix

F ¼ i�h

Z1

0

dx
2p

NðxÞ ln det S ¼ i�h

Z1

0

dx
2p

NðxÞTr ln S: ð4:18Þ

The symbols det and Tr refer to determinant and trace over the modes of the
scattering matrix at a given frequency x: After a Wick rotation the formula can
still be written as a Matsubara sum

F ¼ kBT
X

m

0Tr ln DðinmÞ; nm �
2pmkBT

�h
: ð4:19Þ

The matrix D (here written at Matsubara frequencies xm ¼ inm) is the denominator
of the scattering matrix. It describes the resonance properties of the cavity formed
by the two objects 1 and 2 and may be written as

D ¼ 1� R1 exp�KL R2 exp�KL : ð4:20Þ

The matrices R1 and R2 represent reflection on the two objects 1 and 2 respectively
while exp�KL describes propagation in between reflections on the two objects.
Note that the matrices D, R1 and R2; which were diagonal in the plane wave basis
for specular scattering, are no longer diagonal in the general case of non-specular
scattering. The propagation factors remain diagonal in this basis with their
eigenvalues j written as in (4.14). Clearly the expression (4.19) does not depend
on the choice of a specific basis. We remark also that (4.19) takes a simpler form in
the limit of zero temperature

F ¼ � dE

dL
; E ¼ �h

Z1

0

dn
2p

ln det DðinÞ: ð4:21Þ
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Applications to be presented in the next sections will also involve the Casimir
force gradient G which is often measured in experiments and defined as

G ¼ � dF

dL
: ð4:22Þ

A number of the following applications will be discussed within the zero tem-
perature limit, with a change of notation from the free energy F to the ordinary
energy E at zero temperature.

4.4 Applications to Non-trivial Geometries

Formula (4.21) has been used to evaluate the effect of roughness or corrugation of
the surfaces on the value of the Casimir force [107, 77–79, 31] in a perturbative
manner with respect to the roughness or corrugation amplitudes. It has also
allowed one to study a Bose–Einstein condensate used as a local probe of vacuum
above a nano-grooved plate [111, 112]. The scattering approach has clearly a
larger domain of applicability, not limited to the perturbative regime, as soon as
techniques are available for computing the large matrices involved in its evalua-
tion [82, 83, 140].

Another important application, which we will summarize also in the present
section, corresponds to the plane-sphere geometry used in most Casimir force
experiments and for which explicit ‘‘exact calculations’’ (see a discussion of the
meaning of this expression below) have recently become available [68–72].

4.4.1 Perturbative Treatment of Shallow Corrugations

As already stated, the lateral Casimir force between corrugated plates is a topic of
particular interest. It could in particular allow for a new test of quantum electro-
dynamics through the dependence of the lateral force on the corrugation wave-
vector [77–79].

Here, we consider a geometry with two plane mirrors, M1 and M2; having
corrugated surfaces described by uniaxial sinusoidal profiles such as shown in
Fig. 4.2. We denote h1 and h2 the local heights with respect to mean planes z1 ¼ 0
and z2 ¼ L

h1 ¼ a1 cosðkCxÞ; h2 ¼ a2 cos kCðx� bÞð Þ; kC ¼ 2p=kC: ð4:23Þ

h1 and h2 have null spatial averages and L is the mean distance between the two
surfaces; h1 and h2 are both counted as positive when they correspond to a
decrease in the separation; kC is the corrugation wavelength, kC the corresponding
wavevector, and b the spatial mismatch between the corrugation crests. At lowest
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order in the corrugation amplitudes, when a1; a2 � kC; kP; L (with kP the plasma
wavelength describing the properties of the metallic mirror), the Casimir energy
may be obtained by expanding up to second order the general formula (4.21).
This perturbative approximation will be dropped in the next subsection.

The part of the Casimir energy able to produce a lateral force is then found to be

Flat ¼� odEcorrug

ob
;

dEcorrug ¼� �h

Z1

0

dn
2p

Tr dR1
exp�KL

Dplane

dR2
exp�KL

Dplane

� �
:

ð4:24Þ

dR1 and dR2 are the first-order variation of the reflection matrices R1 and R2

induced by the corrugations; Dplane is the matrix D evaluated at zeroth order in the
corrugations; it is diagonal on the basis of plane waves and commutes with K.

Explicit calculations of (4.24) have been performed for the simplest case of
experimental interest, with two corrugated metallic plates described by the plasma
dielectric function. These calculations have led to the following expression of the
lateral part of the Casimir energy

dEcorrug ¼ A

2
GCðkCÞa1a2 cosðkCbÞ: ð4:25Þ

The spectral sensitivity function GCðkCÞ has been given and discussed in [79].
Using its expression, it is possible to prove a properly defined ‘‘Proximity Force
Theorem’’ which states that the PFA is recovered at the limit of long corrugation
wavelengths kC ! 0: Obviously, this theorem does not imply that the PFA is
always valid or, in other words, that GCðkCÞ may be replaced by GCð0Þ:

To assess the validity of the PFA for the lateral Casimir force description, we
now introduce the dimensionless quantity

qðkCÞ ¼
GCðkCÞ
GCð0Þ

: ð4:26Þ

Fig. 4.2 Parallel corrugated surfaces, with L representing the mean separation distance, a1 and
a2 the corrugation amplitudes and b the lateral mismatch between the crests. When the
corrugations are supposed to be the smallest length scales, the effect of the corrugations can be
studied in the perturbative expansion. This approximation will be dropped later on
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The variation of this ratio q with the parameters of interest is shown in Fig. 4.3 for
gold covered plates with kP ¼ 137 nm: The ratio q is smaller than unity as soon as
kC significantly deviates from 0 which means that the PFA overestimates the
lateral Casimir force. For large values of kC; it even decays exponentially to zero,
leading to an extreme deviation of the real lateral force from the PFA prediction.

Another situation of interest arises when the corrugation plates are rotated with
respect to each other. Assuming as previously corrugations of sinusoidal shape
with corrugation wavevectors kj having the same modulus k ¼ 2p=kC on both
plates, it is possible to derive the second-order correction dEtorque to the Casimir
energy which depends on the angle h between the corrugations and thus has the
ability to induce a Casimir torque [77, 78, 109]. Only crossed terms, proportional
to the corrugation amplitudes on both plates, contribute to this expression, as the
square terms are independent of the angle h: The expression dEtorque contains as
the special case h ¼ 0 the pure lateral energy discussed above. Note that the
dependence on the material properties and corrugation wavevector are captured by
the same response function GC already calculated.

For quantitative estimations, we assume that the corrugations are restricted to a
rectangular section of area LxLy with transverse dimensions Lx and Ly much larger
than the plate separation L and neglect diffraction at the borders of the plates.
In Fig. 4.4, we plot dEtorque obtained in this manner, in arbitrary units, as a function
of b and h: The Casimir energy is found to be minimal at h ¼ 0 and
b ¼ 0; kC; 2kC; . . .; which corresponds to a situation where corrugations are
aligned. Starting from h ¼ b ¼ 0 and rotating plate 2 around its center, one follows
the line b = 0 in Fig. 4.4. Clearly, for small angles the plate is attracted back to
h ¼ b ¼ 0 without sliding laterally.

The Casimir torque is then deduced by deriving the energy with respect to the
angle h

s ¼ � o

oh
dEtorque: ð4:27Þ

Fig. 4.3 Variation of q
versus the dimensionless
variable kCL for metallic
mirrors described by the
plasma model, for kPL ¼1
(dashed line), 2.5 (dotted
line), 5 (dashed-dotted line)
and 10 (solid line)

4 Casimir Effect in the Scattering Approach 109



Its maximum is at h ¼ 0:66kC=Ly where it is given by

s
LxLy

¼ 0:109a1a2kGCðkÞLy: ð4:28Þ

The maximum torque per unit area is proportional to the length Ly of the corru-
gation lines, which plays the role of the moment arm.

In contrast with the similar torque appearing between misaligned birefringent
plates [141], the torque is here coupled to the lateral force. This could induce
complicated behaviors in an experiment and would probably have to be controlled.
This can be clearly seen on Fig. 4.4: if the plate is released after a rotation of
h[ kC=Ly it will move in a combination of rotation and lateral displacement. The
energy correction vanishes at h ¼ kC=Ly; defining the range of stability of the
configuration b ¼ h ¼ 0: Rotation is favored over lateral displacements only for
h\kC=Ly:

However, the advantage of the configuration with corrugated plates is that the
torque has a larger magnitude. Fig. 4.5 shows the maximum torque as a function of
mean separation between the two corrugated gold plates with a plasma wavelength
kP ¼ 137 nm: At a plate separation of about 100 nm the torque per unit area can be
as high as 10�7 N m�1 These results on lateral forces and Casimir torques suggest
that non-trivial effects of geometry, i.e. effects beyond the PFA, can be observed
with dedicated experiments. It is however difficult to achieve this goal with cor-
rugation amplitudes a1; a2 meeting the conditions of validity of the perturbative
expansion. This approximation is dropped in the next subsection.

4.4.2 Non-perturbative Calculations with Deep Gratings

As already stated, recent experiments have been able to probe the beyond-PFA
regime with deep corrugations [80, 81] and it has also become possible to calculate
exact expressions of the forces between nanostructures without using the pertur-
bative assumption. This necessarily involves the non-specular scattering formula

Fig. 4.4 Casimir energy as a
function of the rotation angle h
and the lateral displacement b
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(4.19) and the evaluation of scattering properties mixing different wavevectors and
polarizations.

In the following we briefly discuss the Casimir interaction energy in a typical
device made of two nanostructured surfaces of intrinsic silicon, such as shown in
Fig. 4.6.

To model the material properties of intrinsic silicon, we use a Drude–Lorentz
model for which the dielectric function is well approximated by [142]

eðinÞ ¼ e1 þ
ðe0 � e1Þn2

0

n2 þ n2
0

; ð4:29Þ

with e0 � 11:87 the value of the dielectric function at zero frequency, e1 � 1:035
the high frequency limit of the dielectric function and x0 ¼ in0 � 4:34 eV:
Calculated with the proximity force approximation, the Casimir force between the
two gratings is given by the geometric sum of two contributions corresponding to
the Casimir force between two plates FPP at distances L and L� 2h; which is
independent of the corrugation period d.

To assess quantitatively the validity of the PFA, we plot as before the
dimensionless quantity

q ¼ F

FPFA

: ð4:30Þ

Fig. 4.7 shows this ratio for two silicon gratings, separated by L = 250 nm, of
height h = 100 nm as a function of the corrugation period d with d1 ¼ d=2 [82].
Clearly, the PFA is not a valid approximation except for two limiting cases, that is
a vanishing corrugation period d ! 0 and a very large corrugation period d !1;
meaning in either case that the structured surfaces become flat. In between, the
exact result for the Casimir force is always smaller than the PFA prediction,
meaning that the PFA overestimates the force. This has to be contrasted with
calculations for perfect conductors where the PFA always underestimates the real
force.

Fig. 4.5 Maximum torque
per unit area as a function of
the mean separation L for
the following parameters:
a1a2 ¼ 200 nm2; Ly ¼ 24 lm;
kP ¼ 137 nm: Solid line:
kC ¼ 2:4 lm; dashed
line: kC ¼ 1:2 lm; dotted
line: kC ¼ 2pL=2:6
(corresponding to the
optimum value)
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One important parameter to keep in mind is the number of diffraction orders
that has to be retained in the calculation in order for the Casimir energy to con-
verge in the numerical calculation. This is illustrated in Fig. 4.8 for two silicon
gratings. For the sake of convenience, we plot the Casimir energy normalized by
the energy for perfectly reflecting plane mirrors, i.e. the energy reduction factor.
The blue curve corresponds to the situation of two gratings of period 400 nm
separated by a distance L = 50 nm. Clearly around five orders of diffraction are
sufficient for the calculation of the Casimir energy in this case. The number of
necessary diffraction orders decreases with increasing distance between the grat-
ings. This is illustrated by the red curve where the two aforementioned gratings are
now separated by a distance L = 400 nm and where the Casimir energy has
basically converged to its final value with only one order of diffraction retained.
The fast convergence is here due to that fact that oblique diffraction orders are

Fig. 4.6 Two surfaces with
rectangular gratings of depth
h, gap width d and trench
width d � d1

Fig. 4.7 Casimir force
normalized by its PFA value
for two gratings of intrinsic
silicon with amplitude
h = 100 nm and d1 ¼ d

2 as a
function of d at a fixed
distance L = 250 nm
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exponentially suppressed with increasing distance [112]. Finally, the greater the
period of the grating the more orders of diffractions are needed as shows the curve
with triangles where the period of the two gratings is now 2 lm: In this case, the
Casimir energy has not yet fully converged to its final value even with as much as
13 orders of diffraction. This can be understood because the momentum transferred
by the grating q ¼ 2p

d is now small so that different orders of diffraction are nearly
collinear with the specular one and therefore greatly contribute to the final energy.

If attention is paid to the issue of convergence this calculation method is
essentially exact and allows for direct comparisons with experimental results. In a
recent experiment, Chan et al. have measured the Casimir force gradient between
a gold sphere and a grating of doped silicon [80]. Two samples of silicon gratings
have been used. Both have a corrugation depth of 1lm; but different periods of
400 nm and 1lm respectively. The experimental data points of the ratio between
the force gradient and its PFA approximation for both samples have been kindly
provided by Ho Bun Chan and are plotted in Fig. 4.9. Experimentally the trench
arrays are created with duty cycle close to but not exactly equal to 50%. This
results in a filling factor p which gives the top part of the grating with respect to the
period. See also the chapter by Capasso et al. in this volume for further details of
this experiment.

Concerning the calculation we model the optical properties of silicon by the
dielectric function (4.29). We have also taken into account the doping of the
silicon by adding a Drude part to this dielectric function, but this has not led to
noticeable changes for the Casimir interaction in the distance range up to 500 nm
which has been explored in the experiment. To model the optical properties of gold
we have used available optical data, extrapolated at low frequencies by a Drude

model eðinÞ ¼ x2
p

nðnþcÞ with xp ¼ 9 eV and c ¼ 35 meV: The method is described in

detail in [36]. The calculations were run up to N = 3 diffraction orders, after which

Fig. 4.8 Convergence of the calculated Casimir energy between two gratings as a function of the
number of diffraction orders retained in the calculation. Gratings with different periods are plotted
as circles and squares (400 nm) and triangles (2 lm). The convergence of the calculations
becomes slower when increasing the grating period d or decreasing the separation L

4 Casimir Effect in the Scattering Approach 113



the result for the Casimir energy was found to have converged. The result of our
calculation for the filling factors such as originally given in [80] is shown in
Fig. 4.9 as the solid green and red curves for the 400 nm (p = 0.51) and 1 lm
(p = 0.48) samples respectively. The theoretical predictions and the experimental
data points are in excellent agreement. In particular, due to a new improved
numerical code the agreement is better than the one presented in [82].

After submitting this paper we have been informed by Chan et al. that the
filling factors in [80] were erroneously interchanged. The correct filling factors
are: p = 0.48 for the 400 nm grating and p = 0.51 for the 1 lm grating. In
Fig. 4.10 we show the same calculations as before but with the new filling factors.
The agreement between experimental and theoretical data points is slightly
degraded for the 400 nm grating, but the overall agreement remains very good.
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Fig. 4.9 Comparisons between experimental measurements and exact calculations for the
Casimir force gradient between a gold sphere and two types of silicon gratings. Squares and
circles correspond to data points provided by Ho Bun Chan for a grating period of 400 nm and
1 lm respectively. The solid curves are calculated data obtained using the scattering approach for
the corresponding experimental parameters
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Fig. 4.10 Same plot as
Fig. 4.9, but with corrected
filling factors
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4.4.3 Exact Calculations in the Plane-sphere Geometry

The plane-sphere geometry is the configuration in which the most precise Casimir
force measurements are currently performed [73]. The Casimir interaction in this
geometry can also be calculated in a formally exact manner using the general
scattering formula (4.19). Such calculations have first been performed for perfectly
reflecting mirrors [68, 69] where it was found that the Casimir energy was smaller
than expected from the PFA and, furthermore, that the result for electromagnetic
fields was departing from PFA more rapidly than was expected from previously
existing scalar calculations [65, 66]. It is only very recently that the same calcu-
lations have been performed for the more realistic case of metallic mirrors at zero
temperature [70] and at arbitrary temperature [71, 72] where both the lossless
plasma model dielectric function and the lossy Drude dielectric function have been
studied. We will sketch the method in the following.

The set-up of a sphere of radius R above a flat plate is schematically presented
in Fig. 4.11. We denote respectively L and L � Lþ R the closest approach dis-
tance and the center-to-plate distance. In this configuration, the general expression
of the Casimir free energy at temperature T may be written as

F ¼ kBT
X

m

0Tr ln DðinmÞ; D � 1� RSe�KLRPe�KL: ð4:31Þ

The expression contains the reflection operators of the sphere RS and the plate RP

which are evaluated with reference points placed at the sphere center and at its
projection on the plane of the plate. They are sandwiched in between operators
e�KL describing the propagation between the two reference points.

The upper expression is conveniently written through a decomposition on
suitable plane-wave and multipole basis [70]; RP is thus expressed in terms of the
Fresnel reflection coefficients rp with p = TE and TM for the two electromagnetic
polarizations, while RS contains the Mie coefficients a‘; b‘ for respectively electric
and magnetic multipoles at order ‘ ¼ 1; 2; :::: Due to rotational symmetry around
the z-axis, each eigenvalue of the angular momentum m gives a separate contri-

bution to the Casimir free energy FðmÞ; obtained through the same formula as
(4.31). The scattering formula is obtained by writing also transformation formulas
from the plane waves basis to the spherical waves basis and conversely.

The result takes the form of a multipolar expansion with spherical waves
labeled by ‘ and m (jmj 	 ‘). It can be considered as an ‘‘exact’’ multipolar series
of the Casimir free energy. Of course, the numerical computations of this series
can only be done after truncating the vector space at some maximum value ‘max of
the orbital index ‘:

The effect of this truncation is represented on Fig. 4.12 where the Casimir
energy in the plane-sphere geometry divided by its PFA estimation

qE ¼
E

EPFA
ð4:32Þ
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is plotted for various values of ‘max; in the special case of perfect mirrors in
vacuum (T = 0). The figure shows that as expected the numerical results are more
and more accurate when ‘max is increased. More precisely the accuracy is sig-
nificantly degraded when the ratio L=R goes below a minimal value inversely
proportional to ‘max

x � L

R
[ xmin; xmin /

1
‘max

: ð4:33Þ

To illustrate the effect of the truncation, one may say that the accuracy is degraded
by typically more than 0:1% when x\0:05 for a value of ‘max ¼ 85: For small
values of x, which corresponds to the most precise current experiments, it may be
possible to obtain information through an extrapolation of the numerical results.
As an example, the dashed line on Fig. 4.12 shows the result of a third degree
polynomial fit using accurate numerical evaluations.

As a further step, we show now on Fig. 4.13 the results corresponding to perfect
and plasma mirrors, still at zero temperature [70]. We have derived the Casimir
energy (4.31) to obtain expressions for the force F and force gradient G, and then
formed the ratios of the plane-sphere exact results to the PFA expectations FPFA

and GPFA respectively

qF ¼
F

FPFA
; qG ¼

G

GPFA
: ð4:34Þ

Using these theoretical evaluations, it is now possible to extract information of
interest for a comparison with the experimental study of the PFA in the plane-
sphere geometry [73]. In this experiment, the force gradient has been measured for
various radii of the sphere and no deviation of the PFA was observed. The authors
expressed their result as a constraint on the slope at origin bG of the function qGðxÞ

qGðxÞ ¼ 1þ bGxþ Oðx2Þ; jbGj\0:4: ð4:35Þ

Reasoning along the same lines, we have interpolated our theoretical evaluation of
qG at low values of x ¼ L=R [70]. Surprisingly the slope obtained for perfect
reflectors was found to lie outside the experimental bound of [73]

bperf
G 
 � 0:48: ð4:36Þ

Fig. 4.11 The geometry of a
sphere of radius R and a plate
at distance L; the center-to-
plate distance is L � Lþ R
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The consistency with this bound is however recovered for the calculations done for
plasma mirrors

bplas
G 
 � 0:21: ð4:37Þ

As a last example of application, we now discuss the effect of a non-zero
temperature. To this end we evaluate (4.31) at ambient temperature (T = 300 K).
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Fig. 4.12 Upper graph: the
ratio qE ¼ E=EPFA of the
plane-sphere Casimir energy
to its PFA estimation is
plotted as a function of ‘max

for different values of
L=R ¼ 0:05; 0:1; 0:2:Lower
graph: same ratio qE plotted
as a function of L=R for
different values of
‘max ¼ 20; 40; 80
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Fig. 4.13 Variation of qG as
a function of L=R; for a
nanosphere of radius
R = 100 nm; the solid line
corresponds to gold-covered
plates (kP ¼ 136 nm) and the
dashed line to perfect
reflectors. The decrease at
low values of L=R represents
a numerical inaccuracy due to
the limited value of ‘max (4.24
in this calculation [69])
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The results of the numerical computations are shown on Fig. 4.14, for the limiting
case of perfect reflection (left) and for Drude metals (right) evaluated for kP ¼
136 nm;kc=kP ¼ 250 (values corresponding to gold). We have calculated the
Casimir force Fperf and FDrud between the plane and the sphere at ambient tem-
perature and then plotted the corresponding ratios #perf and #Drud of this force to a
reference force corresponding to zero temperature

FperfðL; TÞ � � oF perf

oL
; #perf � FperfðL; TÞ

FperfðL; 0Þ ;

FDrudðL; TÞ � � oFDrud

oL
; #Drud � FDrudðL; TÞ

FDrudðL; 0Þ :
ð4:38Þ

The various solid curves are drawn for different sphere radii R as a function of

the separation L; the dashed curves on Fig. 4.14 represent the quantities #perf
PFA and

#Drud
PFA obtained from (4.38) by using the PFA; the dotted curve in the upper graph is

an analytical asymptotic expression discussed below. We do not show the corre-
sponding plots for plasma mirrors as they are very similar to the perfect mirror
case.
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Fig. 4.14 Thermal Casimir
force at T = 300 K divided
by the zero temperature force,
computed between perfectly
reflecting sphere and plane
(upper graph), and between
Drude metals (lower graph),
plotted for kP ¼ 136 nm;
kc=kP ¼ 250: The solid lines
from bottom to top
correspond to increasing
values of sphere radii. The
dotted curve in the upper
graph is the analytical
asymptotic expression in the
L� R limit. The PFA
expressions are given by the
dashed curves
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The comparison of #perf and #Drud reveals surprising features, which could not
be expected from an analysis in the parallel-plate geometry. First both ratios # start
from unity at small distances L=R! 0: For R small enough, the ratios then
decrease below unity with increasing distance, reach a radius-dependent minimum
and then increase again at very large distances. This behavior entails that the
Casimir force is smaller at T=300 K than at T = 0, implying a repulsive contri-
bution from thermal fluctuations. The dotted-dashed PFA curve in the upper graph

of Fig. 4.14 representing #
perf
PFA is always larger than unity, excluding such a

repulsive contribution from thermal fluctuations in the plane-plane geometry.
A second important feature showing up in Fig. 4.14 is that the PFA expression

always overestimates the effect of temperature on the force between perfect (and
plasma) mirrors. However between Drude metals, the PFA underestimates this
effect at small distances and overestimates it at large distances, the overestimation
being however smaller than for perfect mirrors. These results clearly indicate that
there is a strong correlation between the effects of plane-sphere geometry, tem-
perature and dissipation.

The calculation of the Casimir free energy may be done analytically for small
frequencies corresponding to large plane-sphere separations

F perf
‘¼1 ¼ �

3�hcR3

4kTL3
/ðmÞ; m � 2pL

kT

;

/ðmÞ � m2 cosh mþ m sinh mþ cosh m sinh2 m

2 sinh3 m
:

ð4:39Þ

This simple expression is a good approximation, as proven by the fact that the full
expression of #perf tends indeed asymptotically to this simple form for small radii
R� L (dotted line on upper graph of Fig. 4.14). One can also derive from this
expression interesting information about the behavior of the Casimir entropy

Sperf
‘¼1 ¼ �

oF perf
‘¼1

oT
¼ 3kBR3

4L4
/ðmÞ þ m/0ðmÞð Þ: ð4:40Þ

This expression takes on negative values for m.1:5; that is L.1:8 lm at
T = 300 K, which is in agreement with the behavior observed in the upper graph
of Fig. 4.14: in most cases #perf decreases below unity as the distance increases,
reaches a minimum and then increases again at long distances. As long as R is not
too large, the thermal photons provide a repulsive contribution over a distance
range that gets wider as R decreases, to become L.kT=2 for very small
spheres.

We finally will compare the predictions of the dissipationless plasma model and
the dissipative Drude model for the thermal Casimir interaction in the plane-
sphere geometry. The difference will become particularly clear in the high tem-
perature limit L � kT where one only needs to take the first Matsubara frequency
n0 ¼ 0 when computing the Casimir free energy. In the low frequency limit, the
Fresnel coefficients (4.16) for the plates are given by rTE � �rTM � �1 for the
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plasma model. The Mie coefficients are easily evaluated [71, 72] and give the
following approximation for the Casimir force within the plasma model

F plas � �3�hcR3

8kTL3 1þ 1
a2
� coth a

a

� �
L � kT ;R; kP; a �

2pR

kP
:

This result reproduces, as a particular case, the perfectly-reflecting limit when
kP � R:

For the Drude model, the TE Fresnel reflection coefficient has the well-known
low-frequency limit rTE ! 0; whereas the TM coefficient behaves as in the plasma
model: rTM � 1: The low-frequency expansion of the Mie coefficients are also
quite different from the plasma case and can be found in [71, 72]. The resulting
high-temperature large-distance limit for the free energy is

FDrud � � �hcR3

4kTL3 ; L � kT ;R: ð4:41Þ

This remarkable result does not depend on the length scales kP and kc charac-
terizing the material response, whereas the corresponding plasma result (4.41)
clearly depends on kP: One can show that this is always the case in the high-
temperature limit kT � L:

In the case of the Drude model with a non-vanishing relaxation frequency the
free energy for the Drude model turns out to be 2/3 of the expression for perfect
mirrors whereas this ratio is 1/2 in the plane-plane geometry. The latter result is
explained by the fact that the TE reflection coefficient vanishes at zero frequency
so that only the TM modes contribute [42, 45]. The change of the ratio 1/2–2/3 in
the plane-sphere geometry has to be attributed to the redistribution of the TE and
TM contributions into electric and magnetic spherical eigenmodes. The change is
illustrated in Fig. 4.15, where we have plotted the ratio of the thermal Casimir
force Fplas calculated with the plasma model to the one FDrud obtained with the
Drude model. Again, the plots correspond to kP ¼ 136 nm and kc=kP ¼ 250:

1 20.5 5 10
1

1.2

1.4

1.6

1.8

2

L [μm]

F
pl

as
m

a  / 
F

D
ru

de

R = 0.2 μm
R = 1 μm
R = 5 μm
R = 10 μm
PFA

Fig. 4.15 Ratio of thermal
Casimir force at T=300 K
calculated with the plasma
model and the Drude model,
as a function of surface
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values of sphere radii. The
dashed curve is the PFA
prediction

120 A. Lambrecht et al.



The results of our calculations are shown by the solid curves with the sphere
radius increasing from bottom to top. The ratio Fplas=FDrud varies in the plane-
sphere geometry as a function of the sphere radius, clearly demonstrating the strong
interplay between the effects of temperature, dissipation and geometry. For large
spheres (R� kP), the ratio converges to the value 3/2, whereas it remains smaller
for small spheres (down to 1:2 for R
 100 nm). The dashed curve gives the var-
iation of the same ratio as calculated within the PFA which leads to a factor of 2 in
the limits of large distances or high temperatures, corresponding to the prediction in
the parallel-plates geometry. This factor of 2 deduced within the PFA is never
approached within the calculations performed in the plane-sphere geometry.

4.5 Conclusion

In this paper we have reviewed the quantum and thermal Casimir interaction
between parallel plates, corrugated surfaces and plane and spherical mirrors. To
perform our calculations we have extensively used the scattering approach where
the objects are characterized by scattering matrices. We have compared our results
with predictions obtained within the PFA. When taking the diffraction of the
electromagnetic field correctly into account, surprising features appear especially
for the thermal Casimir force in the plane-sphere geometry, where the exact results
differ substantially from predictions within the PFA. While open problems are still
waiting to be tackled, the whole set of presented results clearly illustrates the
usefulness and practicality of the scattering approach in Casimir physics.
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Chapter 5
Geometry and Material Effects in Casimir
Physics-Scattering Theory

Sahand Jamal Rahi, Thorsten Emig and Robert L. Jaffe

Abstract We give a comprehensive presentation of methods for calculating the
Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes,
susceptibility functions, and separations. The technique is applicable to objects
immersed in media other than vacuum, to nonzero temperatures, and to spatial
arrangements in which one object is enclosed in another. Our method combines
each object’s classical electromagnetic scattering amplitude with universal trans-
lation matrices, which convert between the bases used to calculate scattering for
each object, but are otherwise independent of the details of the individual objects.
This approach, which combines methods of statistical physics and scattering
theory, is well suited to analyze many diverse phenomena. We illustrate its power
and versatility by a number of examples, which show how the interplay of
geometry and material properties helps to understand and control Casimir forces.
We also examine whether electrodynamic Casimir forces can lead to stable levi-
tation. Neglecting permeabilities, we prove that any equilibrium position of objects
subject to such forces is unstable if the permittivities of all objects are higher or
lower than that of the enveloping medium; the former being the generic case for
ordinary materials in vacuum.
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5.1 Introduction

Neutral objects exert a force on one another through electromagnetic fields even if
they do not possess permanent multipole moments. Materials that couple to the
electromagnetic field alter the spectrum of the field’s quantum and thermal fluc-
tuations. The resulting change in energy depends on the relative positions of the
objects, leading to a fluctuation-induced force, usually called the Casimir force.
Alternatively, one can regard the cause of these forces to be spontaneous charges
and currents, which fluctuate in and out of existence in the objects due to quantum
mechanics. The name ‘Van der Waals force’ is sometimes used interchangeably
but it usually refers to the Casimir force in the regime where objects are close
enough to one another that the speed of light is effectively infinite. The Casimir
force has been the subject of precision experimental measurements [16–20, 23, 24,
27, 46, 53, 55, 59, 69, 71–73, 88] and can influence the operation of nanoscale
devices [13, 16], see Ref. [54] for a review of the experiments.

Casimir and Polder calculated the fluctuation-induced force on a polarizable
atom in front of a perfectly conducting plate and between two polarizable atoms,
both to leading order at large separation, and obtained a simple result depending
only on the atoms’ static polarizabilities [15]. Casimir then extended this result to
his famous calculation of the pressure on two perfectly conducting parallel plates
[14]. Feinberg and Sucher [34, 35] generalized the result of Casimir and Polder to
include both electric and magnetic polarizabilities. Lifshitz, Dzyaloshinskii, and
Pitaevskii extended Casimir’s result for parallel plates by incorporating nonzero
temperature, permittivity, and permeability into a general formula for the pressure
on two infinite half-spaces separated by a gap [25, 64, 65]. See also the Chap. 2 by
Pitaevskii in this volume.

While these early theoretical predictions of the Casimir force applied only to
infinite planar geometries (or atoms), the first precision experiments measured the
force between a plate and a sphere. This geometry was preferred because keeping
two plane surfaces parallel introduces additional challenges for the experimentalist.
To compare the measurements with theory, however, a makeshift solution had to be
used: known as the Proximity Force Approximation (PFA), it estimates the Casimir
force by integrating the Casimir pressure between opposing infinitesmal surface area
elements, as if they were parallel plates, over the area that the sphere and the plate
expose to one another [74]. In general, this simple approximation does not capture
curvature corrections but in many experimental situations, it performs surprisingly
well, as can be seen in Fig. 5.1, for example; at the small separations at which the
force is typically probed in precision measurements the sphere and the plate surfaces
are well approximated by a collection of infinitesimal parallel plates.

Clearly, for larger separations and for surfaces that are not smooth, the PFA
must fail. For example, in measurements of the Casimir force between a sphere
and a trench array significant discrepancies were found [17]. And even for the
regimes in which the PFA yields good estimates it would be desirable to know
what the corrections are.
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In order to study Casimir forces in more general geometries, it turns out to be
advantageous to describe the influence of an arrangement of objects on the elec-
tromagnetic field by the way they scatter electromagnetic waves. Here, we derive
and apply a representation of the Casimir energy, first developed with various
limitations in Refs. [28, 29] and then fully generalized in Ref. [75], that charac-
terizes each object by its on-shell electromagnetic scattering amplitude. The
separations and orientations of the objects are encoded in universal translation
matrices, which describe how a solution to the source-free Maxwell’s equations in
the basis appropriate to one object looks when expanded in the basis appropriate to
another. The translation matrices depend on the displacement and orientation of
coordinate systems, but not on the nature of the objects themselves. The scattering
amplitudes and translation matrices are then combined in a simple algorithm that
allows efficient numerical and, in some cases, analytical calculations of Casimir
forces and torques for a wide variety of geometries, materials, and external con-
ditions. The formalism applies to a wide variety of circumstances, including:

• n arbitrarily shaped objects, whose surfaces may be smooth or rough or may
include edges and cusps;

• objects with arbitrary linear electromagnetic response, including frequency-
dependent, lossy electric permittivity and magnetic permeability tensors;

• objects separated by vacuum or by a medium with uniform, frequency-
dependent isotropic permittivity and permeability;

• zero or nonzero temperature;
• and objects outside of one another or enclosed in each other.

These ideas build on a range of previous related work, an inevitably incomplete
subset of which is briefly reviewed here: Scattering theory methods were first
applied to the parallel plate geometry, when Kats reformulated Lifshitz theory in

Fig. 5.1 Force between a
sphere of radius �100 lm and
a plate, both coated with Au-
Pd [69]. Square dots
represent measurements, the
solid line is a theoretical
computation using the PFA
approximation and taking
into account roughness and
finite temperature corrections
as well as material properties.
The other lines represent
calculations, where some of
these corrections are not
taken into account
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terms of reflection coefficients [50]. Jaekel and Reynaud derived the Lifshitz
formula using reflection coefficients for lossless infinite plates [48] and Genet,
Lambrecht, and Reynaud extended this analysis to the lossy case [38]. Lambrecht,
Maia Neto, and Reynaud generalized these results to include non-specular
reflection [58]. See also the Chap. 4 by Lambrecht et al. in this volume for
additional discussions of the scattering approach.

Around the same time as Kats’s work, Balian and Duplantier developed a
multiple scattering approach to the Casimir energy for perfect metal objects and
used it to compute the Casimir energy at asymptotically large separations [4, 5] at
both zero and nonzero temperature. In their approach, information about the
conductors is encoded in a local surface scattering kernel, whose relation to more
conventional scattering formalisms is not transparent, and their approach was not
pursued further at the time. One can find multiple scattering formulas in an even
earlier article by Renne [81], but scattering is not explicitly mentioned, and the
technique is only used to rederive older results.

Another scattering-based approach has been to express the Casimir energy as an
integral over the density of states of the fluctuating field, using the Krein formula
[6, 56, 57] to relate the density of states to the S-matrix for scattering from the
ensemble of objects. This S-matrix is difficult to compute in general. In studying
many-body scattering, Henseler and Wirzba connected the S-matrix of a collection
of spheres [47] or disks [93] to the objects’ individual S-matrices, which are easy
to find. Bulgac, Magierski, and Wirzba combined this result with the Krein for-
mula to investigate the scalar and fermionic Casimir effect for disks and spheres
[11, 10, 94]. Casimir energies of solitons in renormalizable quantum field theories
have been computed using scattering theory techniques that combine analytic and
numerical methods [44].

Bordag, Robaschik, Scharnhorst, and Wieczorek [7, 82] introduced path inte-
gral methods to the study of Casimir effects and used them to investigate the
electromagnetic Casimir effect for two parallel perfect metal plates. Li and Kardar
used similar methods to study the scalar thermal Casimir effect for Dirichlet,
Neumann, and mixed boundary conditions [62, 63]. The quantum extension
was developed further by Golestanian and Kardar [41, 42] and was subsequently
applied to the quantum electromagnetic Casimir effect by Emig, Hanke, Golest-
anian, and Kardar, who studied the Casimir interaction between plates with
roughness [31] and between deformed plates [32]. (Techniques developed to study
the scalar Casimir effect can be applied to the electromagnetic case for perfect
metals with translation symmetry in one spatial direction, since then the electro-
magnetic problem decomposes into two scalar ones.) Finally, the path integral
approach was connected to scattering theory by Emig and Buescher [12].

Closely related to the work we present here is that of Kenneth and Klich, who
expressed the data required to characterize Casimir fluctuations in terms of the
transition T-operator for scattering of the fluctuating field from the objects [51].
Their abstract representation made it possible to prove general properties of the
sign of the Casimir force. In Refs. [28, 29], we developed a framework in which
this abstract result can be applied to concrete calculations. In this approach,
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the T-operator is related to the scattering amplitude for each object individually,
which in turn is expressed in an appropriate basis of multipoles. While the T-
operator is in general ‘‘off-shell,’’ meaning it has matrix elements between states
with different spatial frequencies, the scattering amplitudes are the ‘‘on-shell’’
matrix elements of this operator between states of equal spatial frequency.1 So, it is
not the T-operator itself that connects, say, outgoing and standing waves in the
case of outside scattering but its on-shell matrix elements, the scattering ampli-
tudes. In this approach, the objects can have any shape or material properties, as
long as the scattering amplitude can be computed in a multipole expansion (or
measured). The approach can be regarded as a concrete implementation of the
proposal emphasized by Schwinger [90] that the fluctuations of the electromag-
netic field can be traced back to charge and current fluctuations on the objects.
This formalism has been applied and extended in a number of Casimir calculations
[40, 52, 67, 68, 80, 91].

The basis in which the scattering amplitude for each object is supplied is
typically associated with a coordinate system appropriate to the object. Of course a
plane, a cylinder, or a sphere would be described in Cartesian, cylindrical, or
spherical coordinates, respectively. However, any compact object can be descri-
bed, for example, in spherical coordinates, provided that the matrix of scattering
amplitudes can be either calculated or measured in that coordinate system. There
are a limited number of coordinate systems in which such a partial wave expansion
is possible, namely those for which the vector Helmholtz equation is separable.
The translation matrices for common separable coordinate systems, obtained from
the free Green’s function, are supplied in Appendix C of Ref. [75]. For typical
cases, the final computation of the Casimir energy can be performed on a desktop
computer for a wide range of separations. Asymptotic results at large separation
can be obtained analytically.

The primary limitation of the method is on the distance between objects, since
the basis appropriate to a given object may become impractical as two objects
approach. For small separations, sufficient accuracy can only be obtained if the
calculation is taken to very high partial wave order. (Vastly different scales are
problematic for numerical evaluations in general.) In the case of two spheres, the
scattering amplitude is available in a spherical basis, but as the two spheres
approach, the Casimir energy is dominated by waves near the point of closest
approach [89]. As the spheres come into contact an infinite number of spherical
waves are needed to capture the dominant contribution. A particular basis may also
be fundamentally inappropriate at small separations. For instance, if the interaction
of two elliptic cylinders is expressed in an ordinary cylindrical basis, when the
elliptic cylinders are close enough, the smallest circular cylinder enclosing one
may not lie outside the smallest circular cylinder enclosing the other. In that case

1 Because of this relationship, these scattering amplitudes are also referred to as elements of the
T-matrix. In standard conventions, however, the T-matrix differs from the matrix elements of the
T-operator by a basis-dependent constant, so we will use the term ‘‘scattering amplitude’’ to
avoid confusion.
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the cylindrical basis would not ‘‘resolve’’ the two objects (although an elliptic
cylindrical basis would). Finally, for a variety of conceptual and computational
reasons, we are limited to linear electromagnetic response.

In spirit and in mathematical form our final result resembles similar expressions
obtained in surface integral equation methods used in computational electrody-
namics [21]. Using such a formulation, in which the unknowns are currents and
fields on the objects, one can compute the Casimir energy using more general basis
functions, e.g., localized basis functions associated with a grid or mesh, giving rise
to finite element and boundary elements methods [80]. See also the Chap. 6 by
Johnson in this volume for additional discussions of numerical methods in Casimir
physics.

In addition to an efficient computational approach, the scattering formalism has
provided the basis for proving general theorems regarding Casimir forces. The
seemingly natural question whether the force is attractive or repulsive turns out to
be an ill-defined or, at least, a tricky one on closer inspection. When, for example,
many bodies are considered, the direction of the force on any one object depends,
of course, on which other object’s perspective one takes. Even for two objects,
‘‘attractive’’ forces can be arranged to appear as a ‘‘repulsive’’ force, as in the case
of two interlocking combs [84]. To avoid such ambiguous situations one can
restrict oneself to analyzing two objects that are separable by a plane. Even here, it
has turned out that a simple criterion for the direction of the force could not be
found. Based on various calculations for simple geometries it was thought that the
direction of the force can be predicted based on the relative permittivities and
permeabilities of the objects and the medium. Separating materials into two
groups, with (i) permittivity higher than the medium or permeability lower than the
medium (e [ eM and l� lM), or (ii) the other way around (e\eM and l� lM),
Casimir forces had been found to be attractive between members of the same
group and repulsive for different types in the geometries considered. However, a
recent counterexample [61] shows that this is not always true. A rigorous theorem,
which states that Casimir forces are always attractive, exists only for the special
case of mirror symmetric arrangements of objects. It was proven first with a T-
operator formalism [51], similar to our approach used here, and later using
reflection positivity [3]. We have taken an alternative characterization of the force
to be fundamental, namely, whether it can produce a stable equilibrium [77]. Here,
the categorization of materials into the two groups is meaningful since objects
made of materials of the same type cannot produce stable levitation. One practical
consequence of this theorem is that it reveals that many current proposals for
producing levitation using metamaterials cannot succeed.

To illustrate the general formulation, we provide some sample applications.We
include an analysis of the forces between two cylinders or wires [76] and a cyl-
inder and a plate [33, 76, 75]. The Casimir interaction of three bodies is presented
subsequently; it reveals interesting multibody effects [78, 76, 85]. The Casimir
torque of two spheroids is discussed as well [30]. Furthermore, we analyze the
Casimir effect for a parabolic cylinder opposite a plate when both represent perfect
metal material boundary conditions [45]. We find that the Casimir force does not
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vanish in the limit of an infinitesimally thin parabola, where a half plate is
arranged above an infinite plate, and we compute the edge effect. Another type of
geometries that is treated here consists of a finite sphere or a small spheroid inside
a spherical metallic cavity [95].

This chapter is organized as follows: First, we sketch the derivation of the
Casimir interaction energy formula (5.39) in Sect. 5.2. Next, the theorem regarding
stability is derived in Sect. 5.3. Finally, in Sect. 5.4 sample applications are
presented.

5.2 General Theory for Casimir Interactions

This section has been adapted from a longer article, Ref. [75]. Many technical
details and extensive appendices have been omitted to fit the format of this book.

5.2.1 Path Integral Quantization

5.2.1.1 Electromagnetic Lagrangian

We consider the Casimir effect for objects without free charges and currents but
with nonzero electric and magnetic susceptibilities. The macroscopic electro-
magnetic Lagrangian density is

L ¼ 1
2
ðE � D� B �HÞ: ð5:1Þ

The electric field Eðt; xÞ and the magnetic field Bðt; xÞ are related to the fun-
damental four-vector potential Al by E ¼ �c�1otA�rA0 and B ¼ r� A: We
treat stationary objects whose responses to the electric and magnetic fields are
linear. For such materials, the D and B fields are related to the E and H fields by
the convolutions Dðt; xÞ ¼

R1
�1 dt0eðt0; xÞEðt � t0; xÞ and Bðt; xÞ ¼

R1
�1 dt0lðt0; xÞ

Hðt � t0; xÞ in time, where eðt0; xÞ and lðt0; xÞ vanish for t0\0: We consider local,
isotropic permittivity and permeability, although our derivation can be adapted to
apply to non-local and non-isotropic media simply by substituting the appropriate
non-local and tensor permittivity and permeability functions. A more formal
derivation of our starting point (5.1), which elucidates the causality properties of
the permeability and permittivity response functions, is given in Appendix A of
Ref. [75].

We define the quantum-mechanical energy through the path integral, which
sums all configurations of the electromagnetic fields constrained by periodic
boundary conditions in time between 0 and T. Outside of this time interval the
fields are periodically continued. Substituting the Fourier expansions of the form
Eðt; xÞ ¼

P1
n¼�1 Eðxn; xÞe�ixnt with xn ¼ 2pn=T; we obtain the action
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SðTÞ ¼ 1
2

ZT

0

dt

Z
dx E � D� B �Hð Þ ¼ 1

2
T
X1

n¼�1

Z
dx E� � eE� B� � l�1B
� �

;

ð5:2Þ

where e; E, l; and B on the right-hand side are functions of position x and fre-
quency xn; and we have used Dðx; xÞ ¼ eðx; xÞEðx; xÞ and Hðx; xÞ ¼

1
lðx;xÞBðx; xÞ:

From the definition of the fields E and B in terms of the vector potential Al; we
have r� E ¼ i x

c B; which enables us to eliminate B in the action,

SðTÞ ¼ 1
2

T
X1

n¼�1

Z
dx E� � I� c2

x2
n

r�r�
� �

E� c2

x2
n

E� � VE

� �
; ð5:3Þ

where

V ¼ I
x2

n

c2
1� eðxn; xÞð Þ þ r � 1

lðxn; xÞ
� 1

� �
r� ð5:4Þ

is the potential operator and we have restored the explicit frequency dependence of
e and l: The potential operator is nonzero only at those points in space where the
objects are located (e 6¼ 1 or l 6¼ 1).

In the functional integral we will sum over configurations of the field Al: This
sum must be restricted by a choice of gauge, so that it does not include the
infinitely redundant gauge orbits. We choose to work in the gauge A0 ¼ 0;
although of course no physical results depend on this choice.

5.2.1.2 Casimir Energy from Euclidean Action

We use standard tools to obtain a functional integral expression for the ground
state energy of a quantum field in a fixed background described by Vðx; xÞ: The
overlap between the initial state jEai of a system with the state jEbi after time
T can be expressed as a functional integral with the fields fixed at the temporal
boundaries [36],

hEbje�iHT�hjEai ¼
Z

DAjEðt¼0Þ¼Ea
Eðt¼TÞ¼Eb

e
i
�hSðTÞ; ð5:5Þ

where S(T) is the action of (5.2) with the time integrals taken between zero and T,
and H is the corresponding Hamiltonian.

If the initial and final states are set equal and summed over, the resulting
functional integration defines the Minkowski space functional integral

ZðTÞ 	
X

a

hEaje�iHT=�hjEai ¼ tr e�iHT=�h ¼
Z

DAe
i
�hSðTÞ; ð5:6Þ
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which depends on the time T and the background potential Vðx; xÞ: The partition
function that describes this system at temperature 1=b is defined by

ZðbÞ ¼ Zð�i�hbÞ ¼ tr e�bH ; ð5:7Þ

and the free energy F of the field is

FðbÞ ¼ � 1
b

log ZðbÞ: ð5:8Þ

The limit b!1 projects the ground state energy out of the trace,

E0 ¼ Fðb ¼ 1Þ ¼ � lim
b!1

1
b

log ZðbÞ: ð5:9Þ

The unrenormalized energy E0 generally depends on an ultraviolet cutoff, but
cutoff-dependent contributions arise from the objects individually [43, 44] and do
not depend on their separations or orientations. Such terms can remain after
ordinary QED renormalization if objects are assumed to constrain electromagnetic
waves with arbitrarily high frequencies (for example, if the fields are forced to
vanish on a surface). Such boundary conditions should be regarded as artificial
idealizations; in reality, when the wavelengths of the electromagnetic waves
become shorter than the length scales that characterize the interactions of the
material, the influence of the material on the waves vanishes [43]. Accordingly, the
potential V should vanish for real materials in the high-frequency limit. In any
event these cutoff dependences are independent of the separation and orientation of
the objects, and since we are only interested in energy differences, we can remove
them by subtracting the ground state energy of the system when the objects are in
some reference configuration. In most cases we take this configuration to be when
the objects are infinitely far apart, but when calculating Casimir energies for one
object inside another, some other configuration must be used. We denote the
partition function for this reference configuration by Z: In this way we obtain the
Casimir energy,

E ¼ � lim
b!1

1
b

log ZðbÞ=ZðbÞ: ð5:10Þ

Throughout our calculation of E; we will thus be able to neglect any overall
factors that are independent of the relative positions and orientations of the objects.

By replacing the time T by �i�hb; we transform the Minkowski space functional
integral ZðTÞ into the partition function ZðbÞ: In A0 ¼ 0 gauge, the result is
simply to replace the frequencies xn ¼ 2pn

T in (5.4) by i 2pn
�hb ¼ icjn; where jn is the

nth Matsubara frequency divided by c. (In other gauges the temporal component A0

of the vector field must be rotated too.)
The Lagrangian is quadratic, so the modes with different jn decouple and the

partition function decomposes into a product of partition functions for each mode.
Since the electromagnetic field is real, we have E�ðxÞ ¼ Eð�xÞ on the real axis.
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We can thus further simplify this decomposition on the imaginary axis by con-
sidering j� 0 only, but allowing E and E� to vary independently in the path
integral. Restricting to positive j is possible because the response functions
eðicj; xÞ and lðicj; xÞ are invariant under a change of sign in icj; as shown in
Appendix A of Ref. [75]. In the limit b!1; the sum

P
n� 0 turns into an integral

�hcb
2p

R1
0 dj; and we have

E0 ¼ �
�hc

2p

Z1

0

dj log ZðjÞ; ð5:11Þ

where

ZðjÞ ¼
Z

DADA�exp �b
Z

dxE� � Iþ 1
j2
r�r�

� �
Eþ 1

j2
E� � Vðicj; xÞE

� �
;

ð5:12Þ

Vðicj; xÞ ¼ Ij2 eðicj; xÞ � 1ð Þ þ r � 1
lðicj; xÞ � 1

� �
r�: ð5:13Þ

The potential Vðicj; xÞ is real for real j; even though e and l can have
imaginary parts for real frequencies x: Our goal is now to manipulate ZðjÞ in
(5.12) so that it is computable from the scattering properties of the objects.

5.2.2 Green’s Function Expansions and Translation Formulas

The free Green’s function and its representations in various coordinate systems are
crucial to our formalism. The free electromagnetic field (V ¼ 0) obeys equations
of motion obtained by extremizing the corresponding action, (5.2),

�Ix2

c2
þr�r�

� �
Eðx; xÞ ¼ 0: ð5:14Þ

We will employ the electromagnetic dyadic Green’s function G0; defined by

�Ix
2

c2
þr�r�

� �
G0ðx; x; x0Þ ¼ Idð3Þ x� x0ð Þ; ð5:15Þ

written here in the position space representation. The Green’s function has to be
the retarded one, not only on physical grounds, but also as a consequence of the
imaginary-frequency formalism, just as is the case for the response functions e and
l: It is the retarded response functions that are analytically continued in the
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frequency domain to positive imaginary frequency, as shown in Appendix A of
Ref. [75].

The representation of the free Green’s function, which we need, employs the
‘‘regular’’ and ‘‘outgoing’’ solutions to the differential equation, (5.14),

Ereg
a ðx; xÞ ¼ hxjEreg

a ðxÞi; Eout
a ðx; xÞ ¼ hxjEout

a ðxÞi; ð5:16Þ

represented formally by the eigenstate kets jEreg
a ðxÞi and jEreg

a ðxÞi; where the
generalized index a labels the scattering channel, including the polarization. For
example, for spherical wave functions it represents the angular momentum
quantum numbers (l, m) and the polarization E or M. There are six coordinate
systems in which the vector wave equation (5.14) can be solved by separation of
variables and vector wave functions appropriate to that coordinate system can be
constructed [70]. The labels ‘‘regular’’ and ‘‘outgoing’’ denote, respectively, the
wave functions’ non-singular behavior at the origin or ‘outward’ direction of
energy transport along one of the coordinate system’s axes. Let us call the coor-
dinate, along which the latter wave functions are outgoing n1 and the other
coordinates n2 and n3: We will usually work on the imaginary x-axis, in which
case we will encounter the corresponding modified special functions.

The free Green’s function can be expanded in tensor products of these wave
functions,

G0ðx;x;x0Þ¼
X

a

CaðxÞ
Eout

a ðx;n1;n2;n3Þ
Ereg�
a ðx;n

0
1;n
0
2;n
0
3Þ if n1ðxÞ[n01ðx0Þ

Ereg
a ðx;n1;n2;n3Þ
Ein�

a ðx;n
0
1;n
0
2;n
0
3Þ if n1ðxÞ\n01ðx0Þ

;

�

ð5:17Þ

Ein
a is the same as Eout

a except the functional dependence on n1 is complex con-
jugated, making the wave function ‘incoming’. A list of Green’s function
expansions in various common bases, including the normalization constant, CaðxÞ;
is given in Appendix B of Ref. [75]. The wave functions that appear in the series
expansion of the free Green’s functions in (5.17) satisfy wave equations with
frequency x: As we will see in Sect. 5.2.3, the ability to express the Casimir
energy entirely in terms of an ‘‘on-shell’’ partial wave expansion with fixed x will
greatly simplify our calculations.

We will also use the free Green’s function in another representation to combine
the scattering amplitudes for two different objects. In this calculation the one
argument of the Green’s function will be located on each object. As long as the
pair of objects can be separated in one of the separable coordinate systems by the
surface n1 ¼ N ¼ const:; we can distinguish an inside object which lies entirely
inside the surface (n1\N) and an outside object (n1 [ N), see Fig. 5.2. Then, we
can expand the free Green’s function, when one argument, say x lies on object
i and the other argument, say x0; lies on object j, we expand G0ðicj; x; x0Þ in terms
of coordinates xi and x0j that describe each point relative to the origin of the body
on which it lies. Which of the following expansions is appropriate for a particular
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pair of objects depends whether objects i and j are outside of one another, or one
object is inside the other,

G0ðicj;x;x0Þ¼
X
a;b

CbðjÞ

Ereg
a ðj;xiÞ
Uji

abðjÞE
reg�
b ðj;x0jÞ if i and j are outside each other

Ereg
a ðj;xiÞ
Vij

abðjÞEin�
b ðj;x0jÞ

if i is inside j, or

if i is below j (plane wave basis)g

�

Eout
a ðj;xiÞ
Wab

jiðjÞEreg�
b ðj;x0jÞ

if j is inside i, or

if j is below i (plane wave basis)g

�

8>>>>>><
>>>>>>:

ð5:18Þ

where Wji
abðjÞ¼V

ji;y
ab ðjÞ

CaðjÞ
CbðjÞ and Ca is the normalization constant defined in

(5.17). The expansion can be written more compactly as

G0ðicjÞ ¼
X
a;b

ð�CbðjÞÞ jEreg
a ðjÞijEout

a ðjÞi
� �

X
ij
abðjÞ

hEreg
b ðjÞj
hEin

b ðjÞj

 !
; ð5:19Þ

where the X matrix is defined, for convenience, as the negative of the matrix
containing the translation matrices,

X
ijðjÞ ¼ �UjiðjÞ �VijðjÞ

�WjiðjÞ 0

� �
: ð5:20Þ

In (5.19) the bras and kets are to be evaluated in position space in the appro-
priately restricted domains and only one of the three submatrices is nonzero for
any pair of objects i and j as given in (5.18). The translation matrices for various
geometries are provided in Appendix C of Ref. [75].

5.2.3 Classical Scattering of Electromagnetic Fields

In this section, we summarize the key results from scattering theory needed to
compute the scattering amplitude of each body individually. In the subsequent

Fig. 5.2 Geometry of the outside (left) and inside (right) configurations. The dotted lines show
surfaces separating the objects on which the radial variable is constant. The translation vector
Xij ¼ xi � xj ¼ �Xji describes the relative positions of the two origins
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section we will then combine these results with the translation matrices of the
previous section to compute ZðjÞ:

By combining the frequency-dependent Maxwell equations, one obtains the
vector wave equation

ðH0 þ Vðx; xÞÞEðx; xÞ ¼ x2

c2
Eðx; xÞ; ð5:21Þ

where H0 ¼ r�r�;

Vðx; xÞ ¼ I
x2

c2
1� eðx; xÞð Þ þ r � 1

lðx; xÞ � 1

� �
r�; ð5:22Þ

which is the same potential operator as the one obtained by rearranging the
Lagrangian (see (5.4)).

The Lippmann-Schwinger equation [66]

jEi ¼ jE0i �G0VjEi ð5:23Þ

expresses the general solution to (5.21). Here, G0 is the free electromagnetic tensor
Green’s function discussed in Sect. 5.2 and the homogeneous solution jE0i obeys

�x2

c2 IþH0

	 

jE0i ¼ 0: We can iteratively substitute for jEi in (5.23) to obtain the

formal expansion

jEi ¼ jE0i �G0VjE0i þG0VG0VjEi � � � �
¼ jE0i �G0TjE0i;

ð5:24Þ

where the electromagnetic T-operator is defined as

T ¼ V
I

IþG0V
¼ VGG

�1
0 ; ð5:25Þ

and G is the Green’s function of the full Hamiltonian, �x2

c2 IþH0 þ V

	 

G ¼ I:

We note that T; G0; and G are all functions of frequency x and non-local in space.
As can be seen from expanding T in (5.25) in a power series, Tðx; x; x0Þ ¼
hxjTðxÞjx0i is zero whenever x or x0 are not located on an object, i.e., where
Vðx; xÞ is zero. This result does not, however, apply to

T
�1 ¼ G0 þ V

�1; ð5:26Þ

because the free Green’s function is nonlocal. The potential Vðx; xÞ which appears
in (5.22) is the coordinate space matrix element of V; hxjVjx0i ¼ Vðx; xÞdðx�
x0Þ; which can be generalized to the case where V is non-local,
hxjVjx0i ¼ Vðx; x; x0Þ. Note that whether V is local or non-local, its matrix ele-
ments vanish if x and x0 are on different objects or if either x or x0 is outside of the
objects. The definition of V

�1 is natural, hxjV�1jx0i ¼ V
�1ðx; xÞdðx� x0Þ (and
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similarly for the non-local case) when x and x0 are on a single object, which is the
only case that enters our analysis.

Next we connect the matrix elements of the T-operator between states with
equal x to the scattering amplitude F: In our formalism, only this restricted subset
of T-operator matrix elements is needed in the computation of the Casimir energy.

By the choice of the homogeneous solution, jE0i; is regular or outgoing, we can
distinguish two physically different processes. In the former case, the object
scatters the regular wave outward and modifies the amplitude of the imposed
regular wave functions inside, a situation we refer to as outside scattering (left
panel of Fig. 5.3).2 In the latter case, the object modifies the amplitude of the
transmitted wave and partly reflects it as a regular wave inside (inside scattering,
right panel of Fig. 5.3). . ‘Outside’ and ‘inside’ are distinguished by surfaces
n1 ¼ constant, as before. Here we treat the outside scattering case, and refer the
reader to Ref. [75] the inside case and further details. The expansion in (5.17)
allows us to express (5.24) as

Eðx; xÞ ¼ Ereg
a ðx; xÞ �

X
b

Eout
b ðx; xÞ ð5:27Þ

at points x outside a surface n1 ¼ constant enclosing the object. The equation can
be written in Dirac notation, again with the condition that the domain of the
functional Hilbert space is chosen appropriately to the type of solution,

jEðxÞi ¼ jEreg
a ðxÞi þ

X
b

jEout
b ðxÞi � ð�1ÞCbðxÞhEreg

b ðxÞjTðxÞjE
reg
a ðxÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fee
b;aðxÞ

;

ð5:28Þ

Fig. 5.3 The scattering waves for outside scattering (left panel) and inside scattering (right
panel). In both cases the homogeneous solution E0ðxÞ is shown in bold. For outside scattering,
the homogeneous solution is a regular wave, which produces a regular wave inside the object and
an outgoing wave outside the object. For inside scattering, the homogeneous solution is an
outgoing wave, which produces a regular wave inside the object and an outgoing wave outside
the object

2 Alternatively, we can set up asymptotically incoming and outgoing waves on the outside and
regular waves inside. The amplitudes of the outgoing waves are then given by the S-matrix, which
is related to the scattering amplitude F by F ¼ ðS� IÞ=2: Although these two matrices carry
equivalent information, the scattering amplitude will be more convenient for our calculation.
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which defines Fee
b;a as the exterior/exterior scattering amplitude (the one evaluated

between two regular solutions). We will use analogous notation in the other cases
below.

At coordinates x ‘‘far enough inside’’ a cavity of the object, meaning that x has
smaller n1 than any point on the object, the field E is given by

jEðxÞi ¼ jEreg
a ðxÞi þ

X
b

jEreg
b ðxÞi � ð�1ÞCbðxÞhEin

b ðxÞjTðxÞjEreg
a ðxÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fie
b;aðxÞ

;

ð5:29Þ

where again the free states are only defined over the appropriate domain in
position space, and Fie indicates the interior/exterior scattering amplitude.

We have obtained the scattering amplitude in the basis of free solutions with
fixed x: Since one is normally interested in the scattering of waves outside the
object, the scattering amplitude usually refers to Fee: We will use a more general
definition, which encompasses all possible combinations of inside and outside. The
scattering amplitude is always ‘‘on-shell,’’ because the frequencies of both the
operator and the states is x: As a result, it is a special case of the T-operator, which
can connect wave functions with different x:

We find it convenient to assemble the scattering amplitudes for inside and
outside into a single matrix,

FðjÞ ¼ FeeðjÞ FeiðjÞ
FieðjÞ FiiðjÞ

 !

¼ ð�1ÞCaðjÞ
hEreg

a ðjÞjTðicjÞjE
reg
b ðjÞi hEreg

a ðjÞjTðicjÞjEout
b ðjÞi

hEin
a ðjÞjTðicjÞjE

reg
b ðjÞi hEin

a ðjÞjTðicjÞjEout
b ðjÞi

 !
:

ð5:30Þ

where we have set x ¼ icj; since this is the case we use. For simplificity we define

Fie
b;aðxÞ

���
x¼icj
	Fee

b;aðjÞ:

5.2.4 Casimir Free Energy in Terms of the Scattering
Amplitudes

With the tools of the previous two sections, we are now able to re-express the
Euclidean electromagnetic partition function of (5.12) in terms of the scattering
theory results derived in Sect. 5.2.3 for imaginary frequency. We exchange the
fluctuating field A, which is subject to the potential Vðicj; xÞ; for a free field A0;
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together with fluctuating currents J and charges � i
xr � J that are confined to the

objects.3

We multiply and divide the partition function (5.12) by

W ¼
Z

DJDJ�jobjexp �b
Z

dxJ�ðxÞ � V�1ðicj; xÞJðxÞ
� �

¼ detVðicj; x; x0Þ;

ð5:31Þ

where jobj indicates that the currents are defined only over the objects, i.e. the

domain where V is nonzero and therefore V
�1 exists.

We then change variables in the integration, JðxÞ ¼ J0ðxÞ þ i
jVðicj; xÞEðxÞ;

and a second time, Eðicj; xÞ ¼ E0ðicj; xÞ � ij
R

dx0G0ðicj; x; x0ÞJ0ðx0Þ and anal-
ogously for J� and E�; to obtain

ZðjÞ ¼ Z0

W

Z
DJ0DJ0

���
obj

exp �b
Z

dxdx0J0
�ðxÞ � G0ðicj; x; x0Þ þ V

�1ðicj; x; x0Þ
� �

J0ðx0Þ
�

ð5:32Þ�

where

Z0 ¼
Z

DA0DA0�exp �b
Z

dxE0�ðxÞ � Iþ 1
j2
r�r�

� �
E0ðxÞ

� �
; ð5:33Þ

is the partition function of the free field, which is independent of the objects. In
ZðjÞ; current fluctuations replace the field fluctuations of (5.12). The interaction of
current fluctuations on different objects is described by the free Green’s function
G0ðicj; x; x0Þ alone. The inverse potential penalizes current fluctuations if the
potential is small.

To put the partition function into a suitable form for practical computations, we
use the results of the previous sections to re-express the microscopic current
fluctuations as macroscopic multipole fluctuations, which then can be connected to
the individual objects’ scattering amplitudes. This transformation comes about
naturally once the current fluctuations are decomposed according to the objects on
which they occur and the appropriate expansions of the Green’s function are
introduced. We begin this process by noticing that the operator in the exponent of
the integrand in (5.32) is the negative of the inverse of the T-operator (see (5.26)),
and hence

ZðjÞ ¼ Z0detV�1ðicj; x; x0ÞdetTðicj; x; x0Þ ð5:34Þ

3 The sequence of two changes of variables is known as Hubbard-Stratonovich transformation in
condensed matter physics.
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which is in agreement with a more formal calculation: Since Z0 ¼ detG0

ðicj; x; x0Þ and ZðjÞ ¼ detGðicj; x; x0Þ; we only need to take the determinant of
(5.25) to arrive at the result of (5.34).

Both Z0 and detV�1ðicj; xÞ are independent of the separation of the objects,
since the former is simply the free Green’s function, while the latter is diagonal in
x. Even a nonlocal potential Vðicj; x; x0Þ only connects points within the same
object, so its determinant is also independent of the objects’ separation. Because
these determinants do not depend on separation, they are canceled by a reference
partition function in the final result. We are thus left with the task of computing the
determinant of the T-operator.

As has been discussed in Sect. 5.2.3, the T-operator Tðicj; x; x0Þ is not diagonal
in the spatial coordinates. Its determinant needs to be taken over the spatial indices
x and x0; which are restricted to the objects because the fluctuating currents JðxÞ in
the functional integrals are zero away from the objects. This determinant also runs
over the ordinary vector components of the electromagnetic T operator.

A change of basis to momentum space does not help in computing the deter-
minant of the T-operator, even though it does help in finding the determinant of the
free Green’s function, for example. One reason is that the momentum basis is not
orthogonal over the domain of the indices x and x0; which is restricted to the
objects. In addition, a complete momentum basis includes not only all directions of
the momentum vector, but also all magnitudes of the momenta. So, in the matrix
element hEkjTðxÞjEk0 i the wave numbers k and k’ would not have to match, and
could also differ from x=c. That is, the matrix elements could be ‘‘off-shell.’’
Therefore, the T-operator could not simply be treated as if it was the scattering
amplitude, which is the on-shell representation of the operator in the subbasis of
frequency x (see Sect. 5.2.3), and is significantly easier to calculate. Nonetheless,
we will see that it is possible to express the Casimir energy in terms of the on-shell
operator only, by remaining in the position basis.

From (5.25), we know that the inverse of the T-operator equals the sum of the
free Green’s function and the inverse of the potential. Since the determinant of
the inverse operator is the reciprocal of the determinant, it is expedient to start with
the inverse T-operator. We then separate the basis involving all the objects into
blocks for the n objects. In a schematic notation, we have

ð5:35Þ

where the ijth submatrix refers to x 2 object i and x0 2 object j and xi represents a
point in object i measured with respect to some fixed coordinate system. Unlike the
position vectors in Sect. 5.2.2, at this point the subscript of xi does not indicate the
origin with respect to which the vector is measured, but rather the object on which
the point lies. Square brackets are used to remind us that we are considering the
entire matrix or submatrix and not a single matrix element. We note that the
operators T and G0 are functions of icj; but for simplicity we suppress this
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argument throughout this derivation. When the two spatial indices lie on different
objects, only the free Green’s function remains in the off-diagonal submatrices,
because hxijV�1jx0ji ¼ 0 for i 6¼ j.

Next, we multiply T
�1 by a reference T-operator T1 without off-diagonal

submatrices, which can be interpreted as the T-operator at infinite separation,

Each off-diagonal submatrix ½
R

dx0ihxijTijx0iihx0ijG0jx00j i�: is the product of the
T-operator of object i, evaluated at two points xi and x0i on that object, mul-
tiplied by the free Green’s function, which connects x0i to some point x00j on
object j.

Now we shift all variables to the coordinate systems of the objects on which
they lie. As a result, the index on a position vector xi now refers to the object i on
which the point lies and to the coordinate system with origin Oi in which the vector
is represented, in agreement with the notation of Sect. 5.2.2. The off-diagonal
submatrices in (5.36) can then be rewritten using (5.19) as,

X
a;b

hxijTijEreg
a ðjÞihxijTijEout

a ðjÞi
� �

X
ij
ab

hEreg
b ðjÞjx00j i
hEin

b ðjÞjx00j i

 !
ð�CbðjÞÞ

" #
: ð5:37Þ

The matrix ½hxjT1T�1jx00i� has the structure Iþ AB. Using Sylvester’s deter-
minant formula detðIþ ABÞ ¼ detðIþ BAÞ; we see that the determinant is
unchanged if we replace the off-diagonal submatrices in (5.36) by

X
b

ð�1ÞCaðjÞ
hEreg

a ðjÞjTijEreg
b ðjÞi hEreg

a ðjÞjTijEout
b ðjÞi

hEin
a ðjÞjTijEreg

b ðjÞi hEin
a ðjÞjTijEout

b ðjÞi

 !
X

ij
b;c

" #
: ð5:38Þ

With this change, the diagonal submatrices in (5.36) become diagonal in the
partial wave indices rather than in position space. The matrix elements of the T-
operator are the scattering amplitudes, which can be obtained from ordinary
scattering calculations, as demonstrated in Sect. 5.2.3. The first matrix in (5.38),
including the prefactor ð�1ÞCaðjÞ; is FiðjÞ; the modified scattering amplitude of
object i, defined in (5.30).

Putting together (5.11), (5.12), (5.34), and (5.36), we obtain

E ¼ �hc

2p

Z1

0

dj log detðMM
�1
1 Þ; ð5:39Þ

ð5:36Þ
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where

M ¼
F
�1
1 X

12
X

13 . . .
X

21
F
�1
2 X

23 . . .
. . . . . . . . . . . .

0
@

1
A ð5:40Þ

and M
�1
1 is a block diagonal matrix diagðF1F2. . .Þ.

Using the block determinant identity

det
A B

C D

� �
¼ det Að Þdet D� CA

�1
B

� �
¼ det Dð Þdet A� BD

�1
C

� �
; ð5:41Þ

we can simplify this expression for the case of the interaction between two objects,

E ¼ �hc

2p

Z1

0

dj log det I� FaX
ab
FbX

ba
� �

: ð5:42Þ

Usually, not all of the submatrices of F and X are actually needed for a
computation. For example, if all objects are outside of one another, only the
submatrices Fee of the scattering amplitude that describe outside reflection are
needed. If there are only two objects, one inside another, then only the inside
reflection submatrix Fii of the outside object and the outside reflection submatrix
Fee of the inside object are needed.

In order to obtain the free energy at nonzero temperature instead of the ground
state energy, we do not take the limit b!1 in (5.9). Instead, the integral
�hc
2p

R1
0 dj is replaced everywhere by 1

b

P0
n; where cjn ¼ 2pn

�hb with n ¼ 0; 1; 2; 3. . . is

the nth Matsubara frequency. A careful analysis of the derivation shows that the
zero frequency mode is weighted by 1/2 compared to the rest of the terms in the
sum; this modification of the sum is denoted by a prime on the summation symbol.
The factor of 1/2 comes about because the fluctuating charges or currents have to
be real for zero frequency. Thus, for j0; the expressions on the right hand side of
(5.34) should be placed under a square root. (For a complex field, both signs of the
integer n would be included separately, and n ¼ 0 would be included once, with
the normal weight.)

If the medium between the objects is not vacuum but instead has permittivity
eMðicjÞ and magnetic permeability lMðicjÞ different from unity, then the free
Green’s function is multiplied by lMðicjÞ; and its argument j is replaced by

nMðicjÞj; where nMðicjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eMðicjÞlMðicjÞ

p
is the medium’s index of refrac-

tion. Effectively, this change just scales all frequency dependencies in the trans-
lation matrices XðjÞ; which become X nMðicjÞjð Þ. Furthermore, the scattering
amplitudes absorb the factor lMðicjÞ from the free Green’s function and change
non-trivially, i.e. not just by some overall factor or a scaling of the frequency.
They have to be computed with the nonzero electric and magnetic susceptibilities
of the medium.
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5.3 Constraints on Stable Equilibria

Before presenting particular applications of the Casimir energy expression in
(5.39), we consider some general properties of electrodynamic Casimir interac-
tions here. This section has been adapted from a Letter co-authored by two of us
[77].

As described in the Introduction, some general statements about the attractive
or repulsive nature of Casimir forces can be made on the basis of the relative
permittivity and permeability of objects and the medium they are immersed in. But
the sign of the force is largely a matter of perspective, since attractive forces can
be easily arranged to produce repulsion along a specific direction, e.g., as in Ref.
[84]. Instead, we focus on the question of stability, see Fig. 5.4, which is more
relevant to the design and development of MEMs and levitating devices. We find
that interactions between objects within the same class of material (as defined in
the Introduction) cannot produce stable configurations.

Let us take a step back and consider the question of stability of mechanical
equilibria in the realm of electromagnetism. Earnshaw’s theorem [26] states that a
collection of charges cannot be held in stable equilibrium solely by electrostatic
forces. The charges can attract or repel, but cannot be stably levitated. While the
stability of matter (due to quantum phenomena) is a vivid reminder of the caveats
to this theorem, it remains a powerful indicator of the constraints to stability in
electrostatics. An extension of Earnshaw’s theorem to polarizable objects by
Braunbek [9, 8] establishes that dielectric and paramagnetic (e [ 1 and l [ 1)
matter cannot be stably levitated by electrostatic forces, while diamagnetic (l\1)
matter can. This is impressively demonstrated by superconductors and frogs that
fly freely above magnets [37]. If the enveloping medium is not vacuum, the criteria
for stability are modified by substituting the static electric permittivity eM and
magnetic permeability lM of the medium in place of the vacuum value of 1 in the

Fig. 5.4 The Casimir energy is considered for objects with electric permittivity eiðx; xÞ and
magnetic permeability liðx; xÞ, embedded in a medium with uniform, isotropic, eMðxÞ and
lMðxÞ. To study the stability of object A, the rest of the objects are grouped in the combined
entity R. The stability of the position of object A is probed by displacing it infinitesimally by
vector d
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respective inequalities. In fact, if the medium itself has a dielectric constant higher
than the objects (e\eM), stable levitation is possible, as demonstrated for bubbles
in liquids (see Ref. [49], and references therein). For dynamic fields the restrictions
of electrostatics do not apply; for example, lasers can lift and hold dielectric beads
with index of refraction n ¼ ffiffiffiffiffi

el
p

[ 1 [1]. In addition to the force which keeps the
bead in the center of the laser beam there is radiation pressure which pushes the
bead along the direction of the Poynting vector. Ashkin and Gordon have proved
that no arrangement of lasers can stably levitate an object just based on radiation
pressure [2].

We begin our analysis of equilibria of the electrodynamic Casimir force with
the precursor of (5.39), which contains the abstract T and GM-operators, where GM

is the electromagnetic Green’s function operator for an isotropic, homogeneous
medium4,

E ¼ �hc

2p

Z1

0

djtr lnT�1
T1; ð5:43Þ

where the operator ½T�1ðicj; x; x0Þ� equals

T
�1
A ðicj; x1; x

0
1Þ

� �
GMðicj; x1; x

0
2Þ

� �
. . .

GMðicj; x2; x
0
1Þ

� �
T
�1
B ðicj; x2; x

0
2Þ

� �
. . . . . .

0
@

1
A; ð5:44Þ

and T1 is the inverse of T�1 with GM set to zero. The square brackets ‘‘[ ]’’ denote
the entire matrix or submatrix with rows indicated by x and columns by x0.5 The
operator ½T�1ðicj; x; x0Þ� has indices in position space. Each spatial index is lim-
ited to lie inside the objects A;B; . . .. For both indices x and x0 in the same object
A the operator is just the inverse T operator of that object, ½T�1

A ðicj; x; x0Þ�. For
indices on different objects, x in A and x0 in B, it equals the electromagnetic
Green’s function operator ½GMðicj; x; x0Þ� for an isotropic, homogeneous medium.

As shown in Sect. 5.2.4, after a few manipulations, the operators TJ and GM

turn into the on-shell scattering amplitude matrix, FJ; of object J and the trans-
lation matrix X; which converts wave functions between the origins of different
objects. While practical computations require evaluation of the matrices in a

4
GM satisfies r� l�1

M ðicjÞr � þeMðicjÞj2
� �

GMðicj; x; x0Þ ¼ dðx� x0ÞI; and is related to
GM ; the Green’s function of the imaginary frequency Helmholtz equation, by GMðicj; x; x0Þ ¼
lMðicjÞ Iþ ðnMjÞ�2r
r0

	 

GMðicnMj; x; x0Þ.*Here, nMðicjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eMðicjÞlMðicjÞ

p
is the

index of refraction of the medium, whose argument is suppressed to simplify the presentation.
Thus GM ; in contrast to G0; takes into account the permittivity and permeability of the medium
when they are different from one.
5 To obtain the free energy at finite temperature, in place of the ground state energy E;

R
dj
2p is

replaced by the sum kT
�hc

P0
jn � 0 over Matsubara ‘wavenumbers’ jn ¼ 2pnkT=�hc with the j0 ¼ 0

mode weighted by 1=2.
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particular wave function basis, the position space operators TJ and GM are better
suited to our general discussion here.

To investigate the stability of object A, we group the ‘rest’ of the objects into a
single entity R. So, T consists of 2� 2 blocks, and the integrand in (5.43) reduces
to tr ln I� TAGMTRGMð Þ. Merging the components of R poses no conceptual
difficulty given that the operators are expressed in a position basis, while an actual
computation of the force between A and R would remain a daunting task. If object
A is moved infinitesimally by vector d, the Laplacian of the energy is given by

r2
dE
��
d¼0
¼ ��hc

2p

Z1

0

djtr
h
2n2

MðicjÞj2 TAGMTRGM

I� TAGMTRGM
ð5:45Þ

þ2TArGMTR rGMð ÞT I

I� TAGMTRGM
ð5:46Þ

þ2TArGMTRGM
I

I� TAGMTRGM
ð5:47Þ

� TArGMTRGM þ TAGMTR rGMð ÞT
� � I

I� TAGMTRGM

i
:

After displacement of object A, the Green’s function multiplied by TA on the
left and TR on the right ðTAGMTRÞ becomes GMðicj; xþ d; x0Þ; while that mul-
tiplied by TR on the left and TA on the right ðTRGMTAÞ becomes
GMðicj; x; x0 þ dÞ. The two are related by transposition, and indicated by
rGMðicj; x; x0Þ ¼ rdGMðicj; xþ d; x0Þjd¼0and-
in the above equation.

In the first line we have substituted n2
MðicjÞj2

GM forr2
GM; the two differ only

by derivatives of d–functions which vanish since GM icj; x; x0ð Þ is evaluated with
x in one object and x0 in another. In expressions not containing inverses of T-
operators, we can extend the domain of all operators to the entire space:
TJðicj; x; x0Þ ¼ 0 if x or x0 are not on object Jand thus operator multiplication is
unchanged.

To determine the signs of the various terms in r2
dE
��
d¼0

; an analysis similar to
Ref. [51] can be performed. Consequently, the Laplacian of the energy is found to
be smaller than or equal to zero as long as both TA and TR are either positive or
negative semidefinite for all imaginary frequencies.6 The eigenvalues of TJ ;
defined in (5.25), on the other hand, are greater or smaller than zero depending on
the sign sJ of VJ ; since

6 In practice, TA and TR suffice to have the same sign over the frequencies, which contribute
most to the integral (or the sum) in (5.43)
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TJ ¼ sJ
ffiffiffiffiffiffiffiffiffiffi
sJVJ

p I

Iþ sJ
ffiffiffiffiffiffiffiffiffiffi
sJVJ
p

GM
ffiffiffiffiffiffiffiffiffiffi
sJVJ
p

ffiffiffiffiffiffiffiffiffiffi
sJVJ

p
: ð5:48Þ

We are left to find the sign of the potential,

VJðicj; xÞ ¼ Ij2 eJðicj; xÞ � eMðicjÞð Þ
þ r � l�1

J ðicj; xÞ � l�1
M ðicjÞ

� �
r�;

ð5:49Þ

of the object A, and the compound object R.7The sign is determined by the
relative permittivities and permeabilities of the objects and the medium: If
eJðicj; xÞ[ eMðicjÞ and lJðicj; xÞ� lMðicjÞ hold for all x in object J, the
potential VJ is positive. If the opposite inequalities are true, VJ is negative. The
curl operators surrounding the magnetic permeability do not influence the sign,
as in computing an inner product with VJ they act symmetrically on both sides.
For vacuum eM ¼ lM ¼ 1; and material response functions eðicj; xÞ and
lðicj; xÞ are analytical continuations of the permittivity and permeability for real
frequencies [60]. While eðicj; xÞ[ 1 for positive j; there are no restrictions
other than positivity on lðicj; xÞ. (For non-local and non-isotropic response,
various inequalities must be generalized to the tensorial operators e$ðicj; x; x0Þ
and l$ðicj; x; x0Þ.)

Thus, levitation is not possible for collections of objects characterized by
eJðicj; xÞ and lJðicj; xÞ falling into one of the two classes described earlier,
(i) eJ=eM [ 1 and lJ=lM � 1 (positive VJ and TJ), or (ii) eJ=eM\1 and
lJ=lM � 1 with (negative VJ and TJ). (Under these conditions parallel slabs
attract.) The frequency and space dependence of the functions has been sup-
pressed in these inequalities. In vacuum, eMðicjÞ ¼ lMðicjÞ ¼ 1; since
eðicj; xÞ[ 1 and the magnetic response of ordinary materials is typically neg-
ligible [60], one concludes that stable equilibria of the Casimir force do not
exist. If objects A and R, however, belong to different categories—under which
conditions the parallel plate force is repulsive—then the terms under the trace in
lines (45) and (46) are negative. The positive term in line (47) is typically
smaller than the first two, as it involves higher powers of T and GM . In this case
stable equilibrium is possible, as demonstrated recently for a small inclusion
within a dielectric filled cavity [79]. For the remaining two combinations of
inequalities involving eJ=eM and lJ=lM the sign of VJ cannot be determined
a priori. But for realistic distances between objects and the corresponding fre-
quency ranges, the magnetic susceptibility is negligible for ordinary materials,
and the inequalities involving l can be ignored.

In summary, the instability theorem applies to all cases where the coupling of
the EM field to matter can be described by response functions e and l; which may
vary continuously with position and frequency. Obviously, for materials which at a

7 The first curl in the operator VJ results from an integration by parts. It is understood that it
acts on the wave function multiplying VJ from the left.
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microscopic level cannot be described by such response functions, e.g., because of
magneto-electric coupling, our theorem is not applicable.

Even complicated arrangements of materials obeying the above conditions are
subject to the instability constraint. For example, metamaterials, incorporating
arrays of micro-engineered circuity mimic, at certain frequencies, a strong mag-
netic response, and have been discussed as candidates for Casimir repulsion across
vacuum. (References [87, 86] critique repulsion from dielectric/metallic based
metamaterials, in line with our following arguments.) In our treatment, in accord
with the usual electrodynamics of macroscopic media, the materials are charac-
terized by eðicj; xÞ and lðicj; xÞ at mesoscopic scales. In particular, chirality and
large magnetic response in metamaterials are achieved by patterns made from
ordinary metals and dielectrics with well-behaved eðicj; xÞ and lðicj; xÞ � 1 at
short scales. The interesting EM responses merely appear when viewed as
‘effective’ or ‘coarse grained’.

Clearly, the coarse-grained response functions, which are conventionally
employed to describe metamaterials, should produce, in their region of validity,
the same scattering amplitudes as the detailed mesoscopic description. Conse-
quently, as long as the metamaterial can be described by eðicj; xÞ and
lðicj; xÞ �1; the eigenvalues of the T operators are constrained as described
above, and hence subject to the instability theorem. Thus, the proposed use of
chiral metamaterials in Ref. [96] cannot lead to stable equilibrium since the
structures are composites of metals and dielectrics. Finally, we note that insta-
bility also excludes repulsion between two objects that obey the above condi-
tions, if one of them is an infinite flat plate with continuous translational
symmetry: Repulsion would require that the energy as a function of separation
from the slab should have o2

dE[ 0 at some point since the force has to vanish at
infinite separation. A metamaterial does not have continuous translational sym-
metry at short length scales but this symmetry is approximately valid in the limit
of large separations (long wavelengths), where the material can be effectively
described as a homogeneous medium. At short separations lateral displacements
might lead to repulsion that, however, must be compatible with the absence of
stable equilibrium.

5.4 Applications

This section gives an overview on different geometries and shapes that have been
studied by the approach that we introduced in Sect. 5.2. A selection of applications
has been made to showcase generic situations and important effects that had
not been studied in detail before the development of the methods described here.
We shall mainly summarize analytical and numerical results for the Casimir
interaction in the various systems. For details on their derivation and additional
implementations of the scattering approach we refer to the literature.

152 S. J. Rahi et al.



5.4.1 Cylinders, Wires, and Plate

The extent to which EM field fluctuations are correlated depends on the effective
dimensionality of the space that can be explored by the fluctuations. Therefore,
Casimir interactions are expected to depend strongly on the codimension of the
interacting objects. The focus of this subsection is on the particular properties of
systems with a codimension of the critical value two. We consider these problems
in the context of interactions between cylinders and a cylinder and a plate, both
perfect reflectors and dielectric materials. Cylindrical geometries are of recent
experimental interest since they are easier to hold parallel than plates and still
generate a force that is extensive in one direction.

We consider two cylinders of equal radii R and length L!1 with center-to-
center separation d, see Fig. 5.5a [76]. (The related configuration where one
cylinder is inside another cylinder is treated in Ref. [22].) For this geometry the
interaction energy is obtained from the expression
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Fig. 5.5 a Casimir energy
for two cylinders of equal
radius R as a function of
surface-to-surface distance
d � 2R (normalized by the
radius). The energy is divided

by the PFA estimate Ecyl�cyl
PFA

for the energy. The solid
curves show our numerical
results; the dashed lines
represent the asymptotic
results of (5.54). b Casimir
energy for a cylinder of
radius R parallel to a plate as
a function of the surface-to-
surface distance H � R
(normalized by the radius).
The energy is divided by the

PFA estimate Ecyl�plate
PFA . The

solid curves reflect our
numerical results; the dashed
lines represent the asymptotic
results of (5.58)
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E ¼ �hc

2p

Z1

0

dj log det I�Fee
cylU

baFee
cylU

ab
	 


: ð5:50Þ

with the exterior scattering amplitudes of a cylinder,

Fee
cyl;k0zn0E;kznM ¼Fee

cyl;k0zn0M;kznE ¼ 0;

Fee
cyl;k0zn0M;kznM ¼ �

2p
L
dðkz � k0zÞdn;n0

I0n Rpð Þ
K 0n Rpð Þ ;

Fee
cyl;k0zn0E;kznE ¼ �

2p
L
dðkz � k0zÞdn;n0

In Rpð Þ
Kn Rpð Þ ;

ð5:51Þ

and the matrices Uab; Uba that translate from cylinder a to b and vice versa. Their
elements are summarized in Ref. [75]. The matrix inside the determinant is
diagonal in kz; so the log-determinant over this index turns into an overall integral.
A change of variable to polar coordinates converts the integrals over j and kz to a
single integral over p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z þ j2
p

; yielding

E ¼ �hcL

4p

Z1

0

pdp log detNM þ log detNE
� �

; ð5:52Þ

where

NM
n;n00 ¼ dn;n00 �

X
n0

I 0nðpRÞ
K 0nðpRÞKnþn0 ðpdÞ I0n0 ðpRÞ

K 0n0 ðpRÞKn0þn00 ðpdÞ

NE
n;n00 ¼ dn;n00 �

X
n0

InðpRÞ
KnðpRÞKnþn0 ðpdÞ In0 ðpRÞ

Kn0 ðpRÞKn0þn00 ðpdÞ
ð5:53Þ

describe magnetic (TE) or Neumann modes and electric (TM) or Dirichlet modes,
respectively

For large separations d � R, the asymptotic behavior of the energy is deter-
mined by the matrix elements for n ¼ n0 ¼ 0 for Dirichlet modes and n ¼ n0 ¼
0;1 for Neumann modes. Taking the determinant of the matrix that consists only
of these matrix elements and integrating over p yields straightforwardly the
attractive interaction energies

EE ¼ � �hcL

d2

1

8p log2ðd=RÞ
1� 2

logðd=RÞ þ � � �
� �

;

EM ¼ ��hcL
7

5p
R4

d6

ð5:54Þ

for electric (Dirichlet) and magnetic (Neumann) modes. The asymptotic interac-
tion is dominated by the contribution from electric (Dirichlet) modes that vanishes
for R! 0 only logarithmically.
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For arbitrary separations higher order partial waves have to be considered. The
number of partial waves has to be increased with decreasing separation. A
numerical evaluation of the determinant and the p-integration can be performed
easily and reveals an exponentially fast convergence of the energy in the trunca-
tion order for the partial waves. Down to small surface-to-surface separations of
ðd � 2RÞ=R ¼ 0:1 we find that n ¼ 40 partial waves are sufficient to obtain precise
results for the energy. The corresponding result for the energies of two cylinders of
equal radius is shown in Fig. 5.5a. Notice that the minimum in the curve for the
total electromagnetic energy results from the scaling by the proximity force
approximation (PFA) estimate of the energy. The total energy is monotonic and
the force attractive at all separations.

Next we consider a cylinder and an infinite plate, both perfectly reflecting, see
Fig. 5.5b. The Casimir energy for this geometry has been computed originally in
Ref. [33]. In the limit of perfectly reflecting surfaces, the method of images can be
employed to compute the Casimir interaction for this geometry [76]. Here we use a
different method that can be also applied to real metals or general dielectrics [75].
We express the scattering amplitude of the cylinder now in a plane wave basis,
using

Fee
cyl;k?P;k0?P0 ¼

X
nQ;n0Q0

Ck?PðjÞ
CQ

Dyk?P;kznQF
ee
cyl;kznQ;kzn0Q0Dkzn0Q0;k

0
?P0 ; ð5:55Þ

where k? denotes the vector ðky; kzÞ, Ck?PðjÞ and CQ are normalization coeffi-
cients that can be found together with the matrix elements of the conversion matrix
D in Ref. [75]. The elements of the scattering amplitude in the cylindrical basis are
given by (5.51). The scattering amplitude of the plate is easily expressed in the
plane wave basis as

Fee
plate;k0?E;k?M ¼Fee

plate;k0?M;k?E ¼ 0;

Fee
plate;k0?M;k?M ¼

ð2pÞ2

L2
dð2Þðk? � k0?ÞrM icj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

?=j
2

q �1� �
;

Fee
plate;k0?E;k?E ¼

ð2pÞ2

L2
dð2Þðk? � k0?ÞrE icj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

?=j
2

q �1� �
;

ð5:56Þ

in terms of the Fresnel coefficients that read for a general dielectric surface

rMðicj; xÞ ¼ lðicjÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn2ðicjÞ � 1Þx2

p
lðicjÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn2ðicjÞ � 1Þx2

p ;

rEðicj; xÞ ¼ eðicjÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn2ðicjÞ � 1Þx2

p
eðicjÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn2ðicjÞ � 1Þx2

p :

ð5:57Þ

Here, n is the index of refraction, nðicjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðicjÞlðicjÞ

p
. In the limit of a

perfectly reflecting plate one has rM ! �1, rE ! 1. The energy given by (5.50)
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can now be evaluated in the plane wave basis with the translation matrices given

by the simple expression Uab
k?P;k0?P0 ¼ e�

ffiffiffiffiffiffiffiffiffiffi
k2
?þj2

p
H ð2pÞ2

L2 dð2Þðk? � k0?ÞdP;P0 .

The asymptotic expression for the attractive interaction energy at large distance
H � R reads

EE ¼ � �hcL

H2

1
16p logðH=RÞ ;

EM ¼ ��hcL
5

32p
R2

H4
:

ð5:58Þ

The total electromagnetic Casimir interaction is again dominated by the con-
tribution from the electric (Dirichlet) mode with n ¼ 0 which depends only log-
arithmically on the cylinder radius. The interaction at all separations follows, as in
the case of two cylinders, from a numerical computation of the determinant of
(5.50) and integration over p. The result is shown in Fig. 5.5b.

The above approach has the advantage that it can be also applied to
dielectric objects. The scattering amplitude of a dielectric cylinder can be
obtained by solving the wave equation in a cylindrical basis with appropriate
continuity conditions [75]. The scattering amplitude is diagonal in kz and the
cylindrical wave index n, but not in the polarization. Here we focus on large
distances H � R. Expanding the log det in (5.50), we obtain for the interaction
energy

E ¼ � 3�hcLR2

128pH4

Z1

0

dx
ecyl;0 � 1
ecyl;0 þ 1

ð7þ ecyl;0 � 4x2ÞrEð0; xÞ � ð3þ ecyl;0Þx2rMð0; xÞ
� �

;

ð5:59Þ

if the zero-frequency magnetic permeability lcyl;0 of the cylinder is set to one. If
we do not set lcyl;0 equal to one, but instead take the perfect reflectivity limit for
the plate, we obtain

E ¼ � �hcLR2

32pH4

ðecyl;0 � lcyl;0Þð9þ ecyl;0 þ lcyl;0 þ ecyl;0lcyl;0Þ
ð1þ ecyl;0Þð1þ lcyl;0Þ

: ð5:60Þ

Finally, if we let ecyl be infinite from the beginning (the perfect metal limit for
the cylinder), only the n ¼ 0 TM mode of the scattering amplitude contributes at
lowest order. For a plate with zero-frequency permittivity eplate;0 and permeability
lplate;0, we obtain for the Casimir energy

E ¼ �hcL

16pH2 logðR=HÞ/
E; ð5:61Þ
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where

/E ¼
Z1

0

dx

1þ x
rEð0; xÞ � xrMð0; xÞ
� �

: ð5:62Þ

In Fig. 5.6, /E is plotted as a function of the zero-frequency permittivity of the
plate, eplate;0, for various zero-frequency permeability values, lplate;0.

5.4.2 Three-body Effects

Casimir interactions are not pair-wise additive. To study the consequences of this
property, we consider the case of two identical objects near perfectly reflecting
walls [78, 76]. Multibody effects were first observed for such a configuration with
two rectangular cylinders sandwiched between two infinite plates by Rodriguez
et al. [83]. The role of dimension on this effect is studied by considering either
cylinders, see Fig. 5.7, or spheres, see Fig. 5.8. While we have given a more
detailed description of how the interaction energies follow from the scattering
approach in the previous subsection, we mainly provide the final results in this and
in the following subsections.

First, we consider the geometry shown in Fig. 5.7 with two cylinders that
are placed parallel to one or in-between two parallel plates, where all objects
are assumed to be perfectly reflecting. Using the general expression for the
Casimir energy of multiple objects, (5.39), the energy can be straightforwardly
computed by truncating the matrix M at a finite partial wave order n. Including
up to n ¼ 35 partial waves, we obtain for the Casimir force between two
cylinders of equal radii in the presence of one or two sidewalls the results
shown in Fig. 5.7. In this figure the force at a fixed surface-to-surface distance
d � 2R ¼ 2R between the cylinders is plotted as a function of the relative
separation ðH � RÞ=R between the plate and cylinder surfaces. Two interesting
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increasing 1=�plate;0 and increasing lplate;0. The perfect metal limit (/E ¼ 1) is approached slowly
for large lplate;0, as in the case of a sphere opposite a plate. For large lplate;0 the interaction
becomes repulsive, which is expected given similar results for two infinite plates
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features can be observed. First, the attractive total force varies non-monotoni-
cally with H: Decreasing for small H and then increasing towards the
asymptotic limit between two isolated cylinders for large H, cf. (5.54). The
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extremum for the one-sidewall case occurs at H � R � 0:27R, and for the two-
sidewall case is at H � R � 0:46R. Second, the total force for the two-sidewall
case in the proximity limit H = R is larger than for H=R!1. As might be
expected, the H-dependence for one sidewall is weaker than for two sidewalls,
and the effects of the two sidewalls are not additive: not only is the difference
from the H !1 force not doubled for two sidewalls compared to one, but the
two curves actually intersect at a separation of H=R ¼ 1:13. The non-mono-
tonic sidewall effect arises from a competition between the force from TE and
TM modes as demonstrated by the results in Fig. 5.7. The qualitatively different
behavior of TE and TM modes can be understood intuitively on the basis of
the method of images [76]. The non-monotonicity in H also implies that the
force between the cylinders and the sidewalls is not monotonic in d [76].

Second, we replace the two cylinders by two identical, general polarizable
compact objects that we specialize later on to spheres [85]. The meaning of the
lengths d and H remains unchanged. In the dipole approximation, the retarded
limit of the interaction is described by the static electric (az, ak) and magnetic (bz,
bk) dipole polarizabilities of the objects which can be different in the directions
perpendicular (z) and parallel (k) to the wall. The well-known Casimir-Polder (CP)
potential between two compact objects at large distance is

E2;jðdÞ ¼ �
�hc

8pd7
33a2

k þ13a2
z �14akbz þ ða$bÞ

h i
: ð5:63Þ

When a sidewall is added, the energy changes. Its d-dependent part is then

E��ðd;HÞ ¼ E2;jðdÞ þ E2;nðD; dÞ þ E3ðD; dÞ ð5:64Þ

with D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4H2
p

. The change in the relative orientation of the objects with
‘ ¼ d=D leads to a modification of the 2-body CP potential

E2;nðD; dÞ ¼ �
�hc

8pD7
26a2

k þ20a2
z �14‘2ð4a2

k � 9akaz þ 5a2
z Þ

h

þ 63‘4ðak � azÞ2 � 14 akbkð1�‘2Þ þ‘2akbz

	 

þ ða$bÞ

i
:
ð5:65Þ

The three-body energy E3ðD; dÞ describes the collective interaction between the
two objects and one image object. It is given by

E3ðD; dÞ ¼
4�hc

p
1

d3D4ð‘þ 1Þ5
	

3‘6 þ 15‘5 þ 28‘4 þ 20‘3 þ 6‘2 � 5‘� 1
h 


� a2
k � b2

k

	 

� 3‘6 þ 15‘5 þ 24‘4 � 10‘2 � 5‘� 1
� �

a2
z � b2

z

� �

þ 4 ‘4 þ 5‘3 þ ‘2
� �

azbk � akbz

	 
i
: ð5:66Þ
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It is instructive to consider the two limits H � d and H � d. For H � d, E��
turns out to be the CP potential of (5.63) with the replacements az ! 2az,
ak ! 0, bz ! 0, bk ! 2bk. The two-body and three-body contributions add
constructively or destructively, depending on the relative orientation of a dipole
and its image which together form a dipole of zero or twice the original strength
[85].

For H � d the leading correction to the CP potential of (5.63) comes from the
three-body energy. The energy then becomes (up to order H�6)

E��ðd;HÞ ¼ E2;jðdÞ þ
�hc

p

a2
z � a2

k
4d3H4

þ
9a2
k � a2

z � 2akbz

8dH6
� ða$ bÞ

" #
: ð5:67Þ

The signs of the polarizabilities in the leading term �H�4 can be understood
from the relative orientation of the dipole of one object and the image dipole of the
other object [85].

Next, we study the case where the two objects are perfectly reflecting spheres of
radius R. Now we consider arbitrary distances and include higher order multipole
contributions. For R� d;H and arbitrary H=d the result for the force can be
written as

F ¼ �hc

pR2

X1
j¼6

fjðH=dÞ R

d

� �jþ2

: ð5:68Þ

The functions fj can be computed exactly and their full form is given for j ¼
6; 7; 8 in Ref. [85]. For H � d one has f6ðhÞ ¼ �1001=16þ 3=ð4h6Þ þ Oðh�8Þ,
f8ðhÞ ¼ �71523=160þ 39=ð80h6Þ þ Oðh�8Þ so that the wall induces weak repul-
sive corrections. For H � d, f6ðhÞ ¼ �791=8þ 6741h2=8þ Oðh4Þ, f8ðhÞ ¼
�60939=80þ 582879h2=80þ Oðh4Þ so that the force amplitude decreases when
the spheres are moved a small distance away from the wall. This proves the exis-
tence of a minimum in the force amplitude as a function of H for fixed, sufficiently
small R/d.

To obtain the interaction at smaller separations or larger radius, the energy E��
and force F ¼ �oE��=od between the spheres has been computed numerically
[85]. In order to show the effect of the sidewall, the energy and force between the
spheres, normalized to the results for two spheres without a wall, is shown in
Fig. 5.8 for fixed d. When the spheres approach the wall, the force first decreases
slightly if R=d. 0:3 and then increases strongly under a further reduction of
H. For R=dJ0:3 the force increases monotonically as the spheres approach the
wall. This agrees with the prediction of the large distance expansion. The
expansion of (5.68) with j ¼ 10 terms is also shown in Fig. 5.8 for R=d� 0:2. Its
validity is limited to large d=R and not too small H=R; it fails completely for
R=d [ 0:2 and hence is not shown in this range.
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5.4.3 Orientation Dependence

In this subsection we describe the shape and orientation dependence of the
Casimir force using (5.39), first reported in Ref. [30]. We consider the orien-
tation dependent force between two spheroids, and between a spheroid and a
plane. For two anisotropic objects, the CP potential of (5.63) must be gen-
eralized. In terms of the Cartesian components of the standard electric (mag-
netic) polarizability matrix a (b), the asymptotic large distance potential of
two objects (with the ẑ axis pointing from one object to the other), can be
written as

E ¼ � �hc

d7

1
8p

�
13 a1

xxa
2
xx þ a1

yya
2
yy þ 2a1

xya
2
xy

	 


þ 20a1
zza

2
zz � 30 a1

xza
2
xz þ a1

yza
2
yz

	 

þ a! bð Þ

� 7 a1
xxb

2
yy þ a1

yyb
2
xx � 2a1

xyb
2
xy

	 

þ 1$ 2ð Þ

�
: ð5:69Þ

For the case of an ellipsoidal object with static electric permittivity e and
magnetic permeability l, the polarizability tensors are diagonal in a basis oriented
to its principal axes, with elements (for i 2 f1; 2; 3g)

a0
ii ¼

V

4p
e� 1

1þ ðe� 1Þni
; b0

ii ¼
V

4p
l� 1

1þ ðl� 1Þni
; ð5:70Þ

where V ¼ 4pr1r2r3=3 is the ellipsoid’s volume. In the case of spheroids, for
which r1 ¼ r2 ¼ R and r3 ¼ L=2, the so-called depolarizing factors, nj, can

be expressed in terms of elementary functions, n1 ¼ n2 ¼ 1�n3
2 ; n3 ¼ 1�e2

2e3

ðlog 1þe
1�e� 2eÞ, where the eccentricity e ¼ ð1� 4R2

L2 Þ1=2 is real for a prolate
spheroid (L [ 2R) and imaginary for an oblate spheroid (L\2R). The polariz-
ability tensors for an arbitrary orientation are then obtained as a ¼ R�1a0R,
where R is the matrix that orients the principal axis of the spheroid relative to a
fixed Cartesian basis. Note that for rarefied media with e ’ 1, l ’ 1 the
polarizabilities are isotropic and proportional to the volume. Hence, to leading
order in e� 1 the interaction is orientation independent at asymptotically large
separations, as we would expect, since pairwise summation is valid for
e� 1� 1. In the following we focus on the interesting opposite limit of two
identical perfectly reflecting spheroids. We first consider prolate spheroids with
L� R. The orientation of each ‘‘needle’’ relative to the line joining them (the
initial z-axis) is parameterized by the two angles ðh;wÞ, as depicted in Fig. 5.9a.
Then the energy is

5 Geometry and Material Effects in Casimir Physics-Scattering Theory 161



Eðh1; h2;wÞ ¼ �
�hc

d7

�
5L6

1152p ln L
R� 1

� �2

�
cos2 h1 cos2 h2

þ 13
20

cos2 w sin2 h1 sin2 h2 �
3
8

cos w sin 2h1 sin 2h2

�
þ O

�
L4R2

ln L
R

��
;

ð5:71Þ

where w 	 w1 � w2. It is minimized for two needles aligned parallel to their
separation vector. At almost all orientations the energy scales as L6, and vanishes
logarithmically slowly as R! 0. The latter scaling changes when one needle is
orthogonal to ẑ (i.e. h1 ¼ p=2), while the other is either parallel to ẑ (h2 ¼ 0) or
has an arbitrary h2 but differs by an angle p=2 in its rotation about the z-axis (i.e.
w1 � w2 ¼ p=2). In these cases the energy comes from the next order term in
(5.71), and takes the form

E
p
2
; h2;

p
2

	 

¼ � �hc

1152pd7

L4R2

ln L
R� 1

73þ 7 cos 2h2ð Þ; ð5:72Þ

which shows that the least favorable configuration corresponds to two needles
orthogonal to each other and to the line joining them.
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Fig. 5.9 a Orientation of a
prolate (cigar-shaped)
spheroid: The symmetry axis
(initially the z-axis) is rotated
by h about the x-axis and then
by w about the z-axis. For two
such spheroids, the energy at
large distances is give by
(5.71). The latter is depicted
at fixed distance d, and for
w1 ¼ w2, by a contour plot as
function of the angles h1, h2

for the x-axis rotations .
Minima (maxima) are marked
by filled (open) dots. b As in
a for oblate (pancake-shaped)
spheroids, with a contour plot
of energy at large separations
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For perfectly reflecting oblate spheroids with R� L=2, the orientation of each
‘‘pancake’’ is again described by a pair of angles ðh;wÞ, as depicted in Fig. 5.9b.
To leading order at large separations, the energy is given by

E ¼ � �hc

d7

�
R6

144p3

�
765� 5ðcos 2h1 þ cos 2h2Þ þ 237 cos 2h1 cos 2h2

þ 372 cos 2w sin2 h1 sin2 h2 � 300 cos w sin 2h1 sin 2h2

�
þ O

�
R5L

��
: ð5:73Þ

The leading dependence is proportional to R6, and does not disappear for any
choice of orientations. Furthermore, this dependence remains even as the thickness
of the pancake is taken to zero (L! 0). This is very different from the case of the
needles, where the interaction energy vanishes with thickness as ln�1ðL=RÞ. The
lack of L dependence is due to the assumed perfectly reflectivity. The energy is
minimal for two pancakes lying on the same plane (h1 ¼ h2 ¼ p=2, w ¼ 0) and has
energy ��hcð173=18p3ÞR6=d7. When the two pancakes are stacked on top of each
other, the energy is increased to ��hcð62=9p3ÞR6=d7. The least favorable config-
uration is when the pancakes lie in perpendicular planes, i.e., h1 ¼ p=2, h2 ¼ 0,
with an energy ��hcð11=3p3ÞR6=d7.

For an anisotropic object interacting with a perfectly reflecting mirror, at
leading order the CP potential is given by

E ¼ � �hc

d4

1
8p

trða� bÞ þ Oðd�5Þ; ð5:74Þ

which is clearly independent of orientation. Orientation dependence in this system
thus comes from higher multipoles. The next order also vanishes, so the leading
term is the contribution from the partial waves with l ¼ 3 for which the scattering
matrix is not known analytically. However, we can obtain the preferred orientation
by considering a distorted sphere in which the radius R is deformed to
Rþ df ð#;uÞ. The function f can be expanded into spherical harmonics Ylmð#;uÞ,
and spheroidal symmetry can be mimicked by choosing f ¼ Y20ð#;uÞ. The
leading orientation dependent part of the energy is then obtained as

Ef ¼ ��hc
1607

640
ffiffiffi
5
p

p3=2

dR4

d6
cosð2hÞ: ð5:75Þ

A prolate spheroid (d[ 0) thus minimizes its energy by pointing towards the
mirror, while an oblate spheroid (d\0) prefers to lie in a plane perpendicular to
the mirror. (It is assumed that the perturbative results are not changed for large
distortions.) These configurations are also preferred at small distances d, since (at
fixed distance to the center) the object reorients to minimize the closest separation.
Interestingly, the latter conclusion is not generally true. In Ref. [30] it has been
shown that there can be a transition in preferred orientation as a function of d in the
simpler case of a scalar field with Neumann boundary conditions. The separation
at which this transition occurs varies with the spheroid’s eccentricity.
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5.4.4 Edge and Finite Size Effects

In this subsection, based on work reported in Ref. [45], it is demonstrated that
parabolic cylinders provide another example were the scattering amplitudes can be
computed exactly. We use the exact results for scattering from perfect mirrors to
compute the Casimir force between a parabolic cylinder and a plate. In the limiting
case when the curvature at its tip vanishes, the parabolic cylinder becomes a semi-
infinite plate (a knife’s edge), and we can consider how edges and finite size effects
influence the Casimir energy.

The surface of a parabolic cylinder in Cartesian coordinates is described by
y ¼ ðx2 � R2Þ=2R for all z, as shown in Fig. 5.10a, where R is the curvature at the
tip. In parabolic cylinder coordinates, defined through x ¼ lk, y ¼ ðk2 � l2Þ=2,
z ¼ z, the surface is simply l ¼ l0 ¼

ffiffiffi
R
p

for �1\k; z\1. Since sending k!
�k and l! �l returns us to the same point, we restrict our attention to l� 0
while considering all values of k. Then l plays the role of the ‘‘radial’’ coordinate
in scattering theory and one can again define regular and outgoing waves [45].
Since both objects are perfect mirrors, translational symmetry along the z-axis
enables us to decompose the electromagnetic field into two scalar fields, as in the
case of circular cylinders in Sect. 5.4.1. Each scalar field, describing E (Dirichlet)
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Fig. 5.10 a Energy
EH2=ð�hcLÞ versus H=R for
h ¼ 0 and R ¼ 1 on a log-
linear scale for the parabolic
cylinder-plane geometry.
Thedashed linegives the
R ¼ 0 limit and the solid
curve gives the PFA result.
b The coefficient cðhÞ as a
function of angle for R ¼ 0.
The exact result at h ¼ p=2 is
marked with across. Inset:
Dirichlet (circles) and
Neumann (squares)
contributions to the full
electromagnetic result
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or M (Neumann) modes, can then be treated independently, with the sum of their
contributions giving the full electromagnetic result.

The scattering amplitude of the plate is expressed in a plane wave basis and is
given by (5.56) with rM ¼ �1 and rE ¼ 1. The scattering amplitude of the para-
bolic cylinder for E and M polarization is obtained in a parabolic cylinder wave
basis as [45]

Fee
para;kzmE;k0zm

0E ¼ �
2p
L

dðkz � k0zÞdm;m0 fkzmE; fkzmE ¼ im
Dmði~l0Þ

D�m�1ð~l0Þ

Fee
para;kzmM;k0zm

0M ¼ �
2p
L

dðkz � k0zÞdm;m0 fkzmM ; fkzmM ¼ imþ1 D0mði~l0Þ
D0�m�1ð~l0Þ

;

ð5:76Þ

with ~l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

z

pq
and the parabolic cylinder function DmðuÞ for integer m.

For the present geometry, the general formula for the Casimir energy per unit
length can be expressed explicitly as

E

�hcL
¼
Z1

0

dj
2p

Z1

�1

dkz

2p
log det dm;m0 � fkzmP

Z1

�1

dkxUmkxkzðd; hÞrPUm0kxkzðd;�hÞ

0
@

1
A

ð5:77Þ

for polarization P=E or M. Here the matrix U with elements

Umkxkzðd; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i

2kym!
ffiffiffiffiffiffi
2p
p

s
tan /þh

2

	 
m

cos /þh
2

eikyd ð5:78Þ

with ky ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

x þ k2
z

p
and tan/ ¼ kx=ky describes the translation from para-

bolic cylinder to plane waves over the distance d from the focus of the parabola to
the plane where h is the angle of inclination of the parabolic cylinder.

Numerical computations of the energy are performed by truncating the deter-
minant at index mmax. For the numbers quoted below, we have computed for mmax

up to 200 and then extrapolated the result for mmax !1, and in Fig. 5.10 we have
generally used mmax ¼ 100. The dependence of the energy on the separation H ¼
d � R=2 for h ¼ 0 is shown in Fig. 5.10a. At small separations (H=R� 1) the
proximity force approximation, given by

Epfa

�hcL
¼ � p2

720

Z1

�1

dx

H þ x2=ð2RÞ½ �3
¼ � p3

960
ffiffiffi
2
p

ffiffiffiffiffiffi
R

H5

r
; ð5:79Þ

should be valid. The numerical results in Fig. 5.10a indeed confirm this
expectation.
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A more interesting limit is obtained when R=H ! 0, corresponding to a semi-
infinite plate for which the PFA energy vanishes. The exact result for the energy
for R ¼ 0 and h ¼ 0 is

E

�hcL
¼ �C?

H2
; ð5:80Þ

where C? ¼ 0:0067415 is obtained by numerical integration. When the semi-
infinite plate is tilted by an angle h, dimensional analysis suggest for the Casimir
energy [39, 92]

E

�hcL
¼ �CðhÞ

H2
: ð5:81Þ

The function cðhÞ ¼ cosðhÞCðhÞ is shown in Fig. 5.10b. A particularly inter-
esting limit is h! p=2, when the two plates are parallel. In this case, the leading
contribution to the Casimir energy should be proportional to the area of the half-
plane according to the parallel plate formula, Ek=ð�hcAÞ ¼ �ck=H3 with
ck ¼ p2=720, plus a subleading correction due to the edge. Multiplying by cos h
removes the divergence in the amplitude CðhÞ as h! p=2. As in [39], we assume
cðh! p=2Þ ¼ ck=2þ h� p=2ð Þcedge, although we cannot rule out the possibility
of additional non-analytic forms, such as logarithmic or other singularities. With
this assumption, we can estimate the edge correction cedge ¼ 0:0009 from the data
in Fig. 5.10b. From the inset in Fig. 5.10b, we estimate the Dirichlet and Neumann
contributions to this result to be cD

edge ¼ �0:0025 and cN
edge ¼ 0:0034, respectively.

For extensions to other geometries with edges, inclusion of thermal fluctuations
and experimental implications, see Ref. [45].

5.4.5 Interior Configurations

In this last subsection we consider so-called interior configurations where one
object is contained within another that can be also studied with the methods
introduced in Sect. 5.2. Specifically, we obtain the electrodynamic Casimir
interaction of a conducting or dielectric object inside a perfectly conducting
spherical cavity [95]. In the case where an object, i, lies inside a perfectly con-
ducting cavity, the outer object o, the Casimir energy of (5.42) becomes

E ¼ �hc

2p

Z1

0

dj log
detðI�Fii

oW
ioFee

i VioÞ
detðI�Fii

oF
ee
i Þ

; ð5:82Þ

where Fii
o is the scattering amplitude for interior scattering of the conducting

cavity, a sphere in our case, and Fee
i the scattering amplitude of the interior object.

The amplitude matrix for interior scattering is the inverse of the corresponding
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exterior matrix. These scattering amplitudes are evaluated in a spherical vector
wave basis with respect to appropriately chosen origins within each object. The
translation matrices, Wio and Vio, relate regular wave functions between the
coordinate systems of the interior object and the spherical cavity, see Ref. [75] for
details. The determinant in the denominator of (5.82) subtracts the Casimir energy
when the origins of the two objects coincide. This way of normalizing the Casimir
energy differs from the exterior cases considered before, where the objects are
removed to infinite separation; a choice that would be unnatural in the interior
case.

First, we determine the forces and torques on a small object, dielectric or
conducting, well separated from the cavity walls. This is the interior analogue of
the famous Casimir-Polder force on a polarizable molecule near a perfectly con-
ducting plate [15]. In this case the first term in a multiple scattering expansion,
where the integrand of (5.82) is replaced by �TrðFii

oW
ioFee

i VioÞ, already gives
an excellent approximation to the energy. Since the object is small, the scattering
amplitude Fee

i;lmP;l0m0P0 , (where l and m are angular momentum indices and P labels
M or E polarization) can be expanded in powers of j. Only the following terms
contribute to lowest order: Fee

i;1mP;1m0PðjÞ ¼ 2j3aP
mm0=3þ Oðj4Þ, where aP

mm0 is the
static electric (P ¼ E) or magnetic (P ¼ M) polarizability tensor of the inner
object. We consider an exterior spherical shell of radius R and define a to be the
displacement of the center of the interior object from the center of the shell. Using
the dipole approximation for the inner object but including all multipoles of the
exterior shell, we find for the Casimir energy to leading order in r=R (where r is
the typical length scale of the interior object), the energy

3pR4

�hc
Eða=RÞ ¼ f Eða=RÞ � f Eð0Þ

� �
TraE

þ gEða=RÞð2aE
zz � aE

xx � aE
yyÞ þ ðE $ MÞ: ð5:83Þ

The z-axis is oriented from the center of the shell to the innterior object, and aP
ij

represent the interior object’s static polarizability tensors in a Cartesian basis. The
coefficient functions f P and gP can be obtained in terms of an integral over
modified Bessel functions, see Ref. [95]. f E is negative and decreasing with a=R,
while f M is positive and increasing. There are important differences between (5.83)
and the classic Casimir-Polder result: first, the energy depends in a non-trivial way
on a=R; second, at any non-zero distance from the center, the interior object
experiences a torque; and third, the force between the two bodies depends on the
interior object’s orientation.

To explore the orientation dependence of (5.83) assume, for simplicity, there is
a single frame in which both aE and aM are diagonal. In this body-fixed frame,
write a0

xx � a0
yy ¼ b and a0

zz � 1
2ða0

xx þ a0
yyÞ ¼ c (where we have suppressed the

M=E label). The polarizability in the ‘‘lab frame’’ is obtained by a ¼ Ra0R�1,
where R is a rotation matrix that orients the principal axes of the inner object with
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respect to the lab frame. This procedure leaves Tra0 invariant, and gives for the
second line in (5.83),

X
P¼M;E

gPða=RÞ 3bP

2
sin2 h cos 2/þ cPð3 cos2 h� 1Þ

� �
;

where / corresponds to the azimuthal rotation of the object about its principal
z-axis, and h is the angle between the object’s principal z-axis and the ‘‘laboratory’’
z-axis connecting the center of the sphere to the origin of the interior object.

If b 6¼ 0 then the object held at fixed inclination, h, experiences a torque that
causes it to rotate about the body-fixed z-axis. If, however, the object has axial
symmetry ðb ¼ 0), then the only torque on the object tries to align it either parallel
or perpendicular to the displacement axis.

A ‘‘cigar shaped’’ object (c[ 0) prefers to orient so as to point perpendicular to
the z axis, and a ‘‘pancake’’ (c\0) tries to align its two large axes perpendicular to
the z axis. The small ellipse inside the sphere in Fig. 5.11a illustrates a side view of
both the cigar and the pancake in their preferred orientation. It is interesting to note
that gE and gM are both positive. So, in contrast to the force, the contributions to
the torque from magnetic and electric polarizabilities are in the same direction, if

(a)

(b)

Fig. 5.11 a The ratio gP=f P,
which determines the
preferred orientation of the
interior object, plotted versus
x ¼ a=R showing the change
in preferred orientation from
interior (a=R\1) to exterior
(a=R [ 1) (displayed by two
small ellipses as described in
the text). The solid curves are
fits of the form c1ð1� xÞ þ
c2ð1� xÞ2 to these data
points. b PFA correction
coefficients for spheres. r=R
ranges from �1 (interior
concentric), to zero (sphere-
plane), to þ1 (exterior, equal
radii). The data points
correspond to the exact
values of h1 calculated
numerically, while the solid
curve is a fit (see text). Inset:
‘‘interior’’ and ‘‘exterior’’
geometrical configurations
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they have the same sign. More complicated behavior is possible if, for example,
the electric and magnetic polarizabilities are not diagonal in the same body-fixed
coordinate system. Note that our results cannot be compared to the PFA approx-
imation since the the size of the inner object, not the separation of surfaces, d, has
been assumed to be the smallest scale in the analysis.

An identical analysis can be performed for a polarizable object outside a
metallic sphere where a=R [ 1. It turns out that the analogous exterior function
gða=RÞ\0 for both polarizations. Therefore, the preferred orientation of a
polarizable object outside a metallic sphere is opposite of that in the interior case
(see the small ellipse outside the large sphere in Fig. 5.11a). The continuation of
the functions f and g from ‘‘interior’’ to ‘‘exterior’’ is displayed in Fig. 5.11a,
where the transition from one orientation to the other is clear.

Second, we compute numerically from (5.82) the interaction energy of a
finite-size metal sphere with the cavity walls when the separation, d, between
their surfaces tends to zero. In this limit the Casimir force F between two
conducting spheres, which is attractive, is proportional in magnitude to d�3,
where d ¼ R� r � a is the separation of surfaces. The coefficient of d�3 is given
by the PFA,

lim
d!0

d3F ¼ � p3�hc

360
rR

r þ R
: ð5:84Þ

This result holds for both the interior and the exterior configuration of two
spheres. For fixed r we formally distinguish the cases: R [ 0 for the exterior,
R!1 for the plate-sphere, and R\0 for the interior configuration, see
Fig. 5.11b. All possible configurations are taken into account by considering
�1� r=R� 1. Although we know of no derivation of the functional form of the
Casimir force beyond the leading term in the PFA, our numerical results are well
fit by a power series in d=r,

F ¼ � p3�hc

360d3

rR

r þ R
1þ h1ðr=RÞ d

2r
� h2ðr=RÞ d2

2r2
þ � � �

� �
ð5:85Þ

We have used this functional form to extract the coefficient h1ðr=RÞ.
Although the PFA is accurate only in the limit d=r ! 0, it can be extended in

various ways to the whole range of d, r, and R. Depending on the surface
O from which the normal distance to the other surface is measured, one obtains the
‘‘O-based’’ PFA energy. Clearly, the result depends on which object one chooses
as O, but the various results do agree to leading order in d=r. We can choose either
of the two spheres to arrive at the ‘‘r-based PFA’’ or the ‘‘R-based PFA’’,
see Fig. 5.11b. Either one yields a ‘correction’ to the leading order PFA,

hPFA
1;r ðxÞ ¼ � xþ x

1þ x
þ 3

� �
; hPFA

1;R ¼ � 3xþ x

1þ x
þ 1

� �
;
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where x ¼ r=R. In Fig. 5.11b we plot the values of h1 extracted from a numerical
evaluation of the force from (5.82) for various values of r=R\0. For reference, the
two PFA estimates are also shown.

The numerical data in Fig. 5.11b show a smooth transition from the interior to
the exterior configuration. Although the PFA estimates do not describe the data,
the r-based PFA has a similar functional form and divergence as x! �1.
Therefore, we fit the data in Fig. 5.11b to a function, h1ðxÞ ¼ �ðk1xþ k2x=ð1þ
xÞ þ k3Þ and find, k1 ¼ 1:05 0:14; k2 ¼ 1:08 0:08; k3 ¼ 1:38 0:06. Notice,
however, that the actual function h1ðxÞ is not known analytically and that the fit
represents a reasonable choice which may not be unique. Our results show that the
correction to the PFA has a significant dependence on ratio of curvatures of the
two surfaces.
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Chapter 6
Numerical Methods for Computing
Casimir Interactions

Steven G. Johnson

Abstract We review several different approaches for computing Casimir forces
and related fluctuation-induced interactions between bodies of arbitrary shapes and
materials. The relationships between this problem and well known computational
techniques from classical electromagnetism are emphasized. We also review the
basic principles of standard computational methods, categorizing them according
to three criteria—choice of problem, basis, and solution technique—that can be
used to classify proposals for the Casimir problem as well. In this way, mature
classical methods can be exploited to model Casimir physics, with a few important
modifications.

6.1 Introduction

Thanks to the ubiquity of powerful, general-purpose computers, large-scale
numerical calculations have become an important part of every field of science and
engineering, enabling quantitative predictions, analysis, and design of ever more
complex systems. There are a wide variety of different approaches to such cal-
culations, and there is no single ‘‘best’’ method for all circumstances—not only are
some methods better suited to particular situations than to others, but there are also
often severe trade-offs between generality/simplicity and theoretical efficiency.
Even in relatively mature areas like computational classical electromagnetism
(EM), a variety of techniques spanning a broad range of sophistication and

S. G. Johnson (&)
Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA
e-mail: stevenj@math.mit.edu

D. Dalvit et al. (eds.), Casimir Physics, Lecture Notes in Physics 834,
DOI: 10.1007/978-3-642-20288-9_6, � Springer-Verlag Berlin Heidelberg 2011

175



generality remain in widespread use (and new variations are continually devel-
oped) [1–8]. Semi-analytical approaches also remain important, especially per-
turbative techniques to decompose problems containing widely differing length
scales (the most challenging situation for brute-force numerics). Nevertheless,
many commonalities and guiding principles can be identified that seem to apply to
a range of numerical techniques.

Until a few years ago, Casimir forces and other EM fluctuation-induced
interactions occupied an unusual position in this tableau. Realistic, general
numerical methods to solve for Casimir forces were simply unavailable; solu-
tions were limited to special high-symmetry geometries (and often to special
materials like perfect metals) that are amenable to analytical and semi-analytical
approaches. This is not to say that there were not, in principle, decades-old
theoretical frameworks capable of describing fluctuations for arbitrary geometries
and materials, but practical techniques for evaluating these theoretical descrip-
tions on a computer have only been demonstrated in the last few years [9–27]. In
almost all cases, these approaches turn out to be closely related to computational
methods from classical EM, which is fortunate because it means that Casimir
computations can exploit decades of progress in computational classical EM
once the relationship between the problems becomes clear. The long delay in
developing numerical methods for Casimir interactions, from the time the phe-
nomenon was first proposed in 1948 [28], can be explained by three factors.
First, accurate measurements of Casimir forces were first reported only in 1997
[29] and experimental interest in complex Casimir geometries and materials has
only recently experienced dramatic growth due to the progress in fabricating
nanoscale mechanical devices. Second, even the simplest numerical prediction of
a single force requires the equivalent of a large number of classical EM simu-
lations, a barrier to casual numerical experimentation. Third, there have histor-
ically been many equivalent theoretical formulations of Casimir forces, but some
formulations are much more amenable to computational solution than others, and
these formulations are often couched in a language that is opaque to researchers
from classical computational EM.

The purpose of this review is to survey the available and proposed numerical
techniques for evaluating Casimir forces, energies, torques, and related interac-
tions, emphasizing their relationships to standard classical-EM methods. Our goal
is not to identify a ‘‘best’’ method, but rather to illuminate the strengths and
weaknesses of each approach, highlighting the conclusions that can be gleaned
from the classical experience. We will review an intellectual framework in which
to evaluate different numerical techniques, comparing them along several axes for
which quasi-independent choices of approach can be made. We will also
emphasize a few key departures of Casimir problems from ordinary classical EM,
such as the necessity of imaginary- or complex-frequency solutions of Maxwell’s
equations and the need for wide-bandwidth analyses, that impact the adaptation of
off-the-shelf computational methods.

176 S. G. Johnson



6.2 Characterization of Numerical Methods: Three Axes

Numerical methods from distinct groups or research papers often differ in several
ways simultaneously, complicating the task of directly comparing or even
describing them. In order to organize one’s understanding of numerical approa-
ches, it is useful to break them down along three axes of comparison, representing
(roughly) independent choices in the design of a method:

• What problem does the method solve—even within a single area such as
classical EM, there are several conceptually different questions that one can ask
and several ways of asking them that lead to different categories of methods.

• What basis is used to express the unknowns—how the infinite number of
unknowns in the exact partial differential equation (PDE) or integral equation
are reduced to a finite number of unknowns for solution on a computer.

• What solution technique is used to determine these unknowns—even with
the same equations and the same unknowns, there are vast differences among
the types of direct, sparse, and iterative methods that can be used to attack the
problem, and the efficient application of a particular solution technique to a
particular problem is sometimes a research task unto itself.

In this section, we briefly summarize the available problems, basis choices, and
solution techniques for Casimir problems. In subsequent sections, we then discuss
in more detail the specific approaches that have currently been demonstrated or
proposed.

6.2.1 Posing Casimir Problems

In classical EM, there are several types of problems that are typically posed [6,
Appendix D], such as computing source-free time-harmonic eigensolutions
E;H� e�ixt and eigenfrequencies x, computing time-harmonic fields resulting
from a time-harmonic current source J� e�ixt, or computing the time-dependent
fields created by an arbitrary time-dependent source JðtÞ starting at t ¼ 0.
Although these are all closely mathematically related, and in some sense the
solution of one problem can give solutions to the other problems, they lead to very
different types of numerical simulations.

In a similar way, despite the fact that different formulations of Casimir-inter-
action problems are ultimately mathematically equivalent (although the equiva-
lencies are often far from obvious)—and are usually answering the same
conceptual question, such as what is the force or interaction energy for some
geometry—each one leads most naturally to distinct classes of computational
methods. Here, we exclude formulations such as proximity-force (‘‘parallel-
plate’’) approximations [30–32], pairwise summation of Casimir–Polder forces
(valid in the dilute-gas limit) [33–35], and ray optics [36–39], that are useful in
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special cases but represent uncontrolled approximations if they are applied to
arbitrary geometries. Although at some point the distinctions are blurred by the
mathematical equivalencies, we can crudely categorize the approaches as:

• Computing the eigenfrequencies xn and summing the zero-point energy
P

n
�hxn

2
[28, 40]. See Sect. 6.3.

• Integrating the mean energy density or force density (stress tensor), by evalu-
ating field correlation functions hEiEjix and hHiHjix in terms of the classical
EM Green’s functions at x via the fluctuation–dissipation theorem [11–13, 19,
20, 23, 27]. See Sect. 6.5.

• Evaluating a path-integral expression for the interaction energy (or its deriva-
tive), constrained by the boundary conditions—usually, portions of the path
integrals are performed analytically to express the problem in terms of classical
scattering matrices or Green’s functions at each x [9, 10, 14–18, 21, 22, 24–26].
See Sect. 6.6.

In each case, the result must be summed/integrated over all frequencies x to
obtain the physical result (corresponding to thermodynamic/quantum fluctuations
at all frequencies). The relationship of the problem to causal Green’s functions
(fields appear after currents) means that the integrand is analytic for Imx� 0 [41].
As a consequence, there is a choice of contours of x integration in the upper-half
complex plane, which is surprisingly important—it turns out that the integrands are
wildly oscillatory on the real-x axis and require accurate integration over a huge
bandwidth, whereas the integrands are much better-behaved along the imaginary-x
axis (‘‘Wick-rotated’’ or ‘‘Matsubara’’ frequencies). This means that Casimir cal-
culations almost always involve classical EM problems evaluated at complex or
imaginary frequencies, as is discussed further in Sect. 6.4. The nonzero-tempera-
ture case, where the integral over imaginary frequencies becomes a sum (numer-
ically equivalent to a trapezoidal-rule approximation), is discussed in Sect. 6.8.

There is also another way to categorize the problem to be solved: whether one is
solving a partial differential equation (PDE) or an integral equation. In a PDE, one
has volumetric unknowns: fields or other functions at every point in space, related to
one another locally by derivatives and so on. In an integral equation, one typically
has surface unknowns: the fields or currents on the boundaries between piecewise-
homogeneous regions, related to one another non-locally by the Green’s functions
of the homogeneous regions (typically known analytically) [1, 3] (described further
in Sect. 6.5.3). The key point is to take advantage of the common situation in which
one has piecewise-constant materials, yielding a surface integral equation.
(There are also volume integral equations for inhomogeneous media [42], as well as
hybrid integral/PDE approaches [1], but these are less common.) There are other
hybrid approaches such as eigenmode expansion [43–45], also called rigorous
coupled-wave analysis (RCWA) [46, 47] or a cross-section method [48]: a structure
is broken up along one direction into piecewise-constant cross-sections, and the
unknown fields at the interfaces between cross-sections are propagated in the
uniform sections via the eigenmodes of those cross-sections (computed analytically
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or numerically by solving the PDE in the cross-section). Eigenmode expansion is
most advantageous for geometries in which the cross-section is constant over
substantial regions, just as integral-equation methods are most advantageous to
exploit large homogeneous regions.

6.2.2 Choices of Basis

Casimir problems, for the most part, reduce to solving classical EM linear PDEs or
integral equations where the unknowns reside in an infinite-dimensional vector
space of functions. To discretize the problem approximately into a finite number N of
unknowns, these unknown functions must be expanded in some finite basis (that
converges to the exact solution as N !1). There are three typical types of basis:

• Finite differences [2, 49, 50] (FD): approximate a function f(x) by its values on
some uniform grid with spacing Dx, approximate derivatives by some differ-

ence expression [e.g. second-order center differences f 0ðxÞ � f ðxþDxÞ�f ðx�DxÞ
2Dx þ

OðDx2Þ] and integrals by summations (e.g. a trapezoidal rule).
• Finite-element methods [1, 3, 4, 7] (FEM): divide space into geometric ele-

ments (e.g. triangles/tetrahedra), and expand an unknown f(x) in a simple
localized basis expansion for each element (typically, low-degree polynomials)
with some continuity constraints. (FD methods are viewable as special cases of
FEMs for uniform grids.) For an integral-equation approach, where the
unknowns are functions on surfaces, the same idea is typically called a
boundary-element method (BEM) [1, 3, 7, 51, 52].1

• Spectral methods [53]: expand functions in a non-localized complete basis,
truncated to a finite number of terms. Most commonly, Fourier series or related
expansions are used (cosine series, Fourier–Bessel series, spherical or sphe-
roidal harmonics, Chebyshev polynomials, etc.).

Finite differences have the advantage of simplicity of implementation and
analysis, and the disadvantages of uniform spatial resolution and relatively low-
order convergence (errors typically �Dx2 [2] or even �Dx in the presence of
discontinuous materials unless special techniques are used [54, 55]). FEMs can
have nonuniform spatial resolution to resolve disparate feature sizes in the same
problem, at a price of much greater complexity of implementation and solution
techniques, and can have high-order convergence at the price of using complicated
curved elements and high-order basis functions. Spectral methods can have very
high-order or possibly exponential (‘‘spectral’’) convergence rates [53] that can

1 The name method of moments is also commonly applied to BEM techniques for EM. However,
this terminology is somewhat ambiguous, and can refer more generally to Galerkin or other
weighted-residual methods (and historically referred to monomial test functions, yielding
statistical ‘‘moments’’) [53].
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even suit them to analytical solution—hence, spectral methods were the dominant
technique before the computer era and are typically the first class of methods that
appear in any field, such as in Mie’s classic solution of wave scattering from a
sphere [56]. However, exponential convergence is usually obtained only if all
discontinuities and singularities are taken explicitly into account in the basis [53].
With discontinuous materials, this is typically only practical for very smooth, high-
symmetry geometries like spheres, cylinders, and so on; the use of a generic
Fourier/spectral basis for arbitrary geometries reduces to a brute-force method that
is sometimes very convenient [57], but may have unremarkable convergence rates
[53, 57, 58]. BEMs require the most complicated implementation techniques,
because any nontrivial change to the Green’s functions of the homogeneous
regions (e.g. a change in dimensionality, boundary conditions, or material types)
involves tricky changes to the singular-integration methods required to assemble
the matrix [59–61] and to the fast-solver methods mentioned in Sect. 6.2.3.

Given FEM/BEM or spectral basis functions bnðxÞ and a linear equation
ÂuðxÞ ¼ vðxÞ for an unknown function u in terms of a linear differential/integral
operator Â, there are two common ways [53] to obtain a finite set of N equations to
determine the N unknown coefficients cn in uðxÞ �

P
n cnbnðxÞ. One is a collo-

cation method: require that ðÂu� vÞjxn
¼ 0 be satisfied at N collocation points xn.

The other is a Galerkin method: require that hbk; Âu� vi ¼ 0 be satisfied for
k ¼ 1; . . .;N, where h�; �i is some inner product on the function space. Both
approaches result in an N � N matrix equation of the form Au ¼ v. A Galerkin
method has the useful property that if Â is Hermitian and/or definite then the
matrix Akn ¼ hbk; Âbni has the same properties.

The specific situation of vector-valued unknowns in EM creates additional con-
siderations for the basis functions. In order to obtain center-difference approximations
for all the field components, FD methods for EM typically use a staggered Yee grid
[2, 49], in which each component of the EM fields is offset onto its own Dx

2 -shifted
grid. In FEMs for EM, in order to maintain the appropriate continuity conditions for
curl or divergence operators, one uses special classes of vector-valued basis
functions such as Nédélec elements [7, 62]. In BEMs for EM, vector-valued RWG
(Rao, Wilton, and Glisson) basis functions [63] (or generalizations thereof [64]) are
used in order to enforce a physical continuity condition on surface currents (to
preclude accumulation of charge at element edges); see also Fig. 6.3 in Sect. 6.5.3.
A spectral integral-equation method for EM with cylindrical or spherical scatterers
is sometimes called a multipole-expansion method [5], since the obvious spectral
basis is equivalent to expanding the scattered fields in terms of multipole moments.

6.2.3 Solution Techniques for Linear Equations

Given a particular problem and basis choice, one at the end obtains some
N � N set of linear equations Ax ¼ b to solve (or possibly eigenequations

180 S. G. Johnson



Ax ¼ kBx).2 Note also that a single Casimir-force calculation requires the
solution of many such equations, at the very least for an integral over fre-
quencies (see Sect. 6.4). There are essentially three ways to solve such a set of
equations:

• Dense-direct solvers: solve Ax ¼ b using direct matrix-factorization methods
(e.g. Gaussian elimination),3 requiring OðN2Þ storage and OðN3Þ time [65].

• Sparse-direct solvers [66]: if A is sparse (mostly zero entries), use similar
direct matrix-factorization methods, but cleverly re-arranged in an attempt to
preserve the sparsity. Time and storage depend strongly on the sparsity pattern
of A (the pattern of nonzero entries).

• Iterative methods [65, 67, 68]: repeatedly improve a guess for the solution x
(usually starting with a random or zero guess), only referencing A via repeated
matrix–vector multiplies. Time depends strongly on the properties of A and the
iterative technique, but typically requires only OðNÞ storage. Exploits any fast
way [ideally OðNÞ or OðN log N)] to multiply A by any arbitrary vector.

If the number N of degrees of freedom is small, i.e. if the basis converges rapidly
for a given geometry, dense-direct methods are simple, quick, and headache-free
(and have a standard state-of-the-art implementation in the free LAPACK library
[69]). For example, N ¼ 1000 problems can be solved in under a second on any
modern computer with a few megabytes of memory. Up to N� 104 is reasonably
feasible, but N ¼ 105 requires almost 100 GB of memory and days of computation
time without a large parallel computer. This makes dense-direct solvers the
method of choice in simple geometries with a rapidly converging spectral basis, or
with BEM integral-equation methods for basic shapes that can be accurately
described by a few thousand triangular panels, but they rapidly become impractical
for larger problems involving many and/or complex objects (or for moderate-size
PDE problems even in two dimensions).

In PDE methods with a localized (FD or FEM) basis, the matrices A have a
special property: they are sparse (mostly zero). The locality of the operators in
a typical PDE means that each grid point or element directly interacts only with a
bounded number of neighbors, in which case A has only OðNÞ nonzero entries and
can be stored with OðNÞ memory. The process of solving Ax ¼ b, e.g. computing
the LU factorization A ¼ LU by Gaussian elimination [65], unfortunately, ordi-
narily destroys this sparsity: the resulting L and U triangular matrices are generally
not sparse. However, the pattern of nonzero entries that arises from a PDE is not
random, and it turns out that clever re-orderings of the rows and columns during
factorization can partially preserve sparsity for typical patterns; this insight leads

2 This applies equally well, if somewhat indirectly, to the path-integral expressions of Sect. 6.6
where one evaluates a log determinant or a trace of an inverse, since this is done using either
eigenvalues or the same matrix factorizations that are used to solve Ax ¼ b.
3 Technically, all eigensolvers for N [ 4 are necessarily iterative, but modern dense-
eigensolver techniques employ direct factorizations as steps of the process [65].
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to sparse-direct solvers [66], available via many free-software packages imple-
menting different sparsity-preserving heuristics and other variations [68]. The
sparsity pattern of A depends on the dimensionality of the problem, which
determines the number of neighbors a given element interacts with. For meshes/
grids having nearest-neighbor interactions, a sparse-direct solver typically requires
OðNÞ time and storage in 1d (where the matrices are band-diagonal), OðN3=2Þ time
with OðN log NÞ storage in 2d, and OðN2Þ time with OðN4=3Þ storage in 3d [66,
70]. The practical upshot is that sparse-direct methods work well for 1d and 2d
PDEs, but can grow to be impractical in 3d. For BEM and spectral methods, the
interactions are not localized and the matrices are not sparse, so sparse-direct
methods are not directly applicable (but see below for an indirect technique).

For the largest-scale problems, or for problems lacking a sparse A, the remaining
possibility is an iterative method. In these methods, one need only supply a fast way
to multiply A by an arbitrary vector y, and the trick is to use this Ay operation on a
clever sequence of vectors in such a way as to make an arbitrary initial guess x0

converge as rapidly as possible to the solution x, ideally using only O(N) storage.
Many such techniques have been developed [65, 67, 68]. The most favorable
situation for Ax ¼ b occurs when A is Hermitian positive-definite, in which case an
ideal Krylov method called the conjugate-gradient method can be applied, with
excellent guaranteed convergence properties [65, 67], and fortunately this is
precisely the case that usually arises for the imaginary-frequency Casimir methods
below. There are two wrinkles that require special attention, however. First, one
must have a fast way to compute Ay. If A is sparse (as for PDE and FD methods),
then only O(N) nonzero entries of A need be stored (as above) and Ay can be
computed in O(N) operations. In a spectral method, A is generally dense, but for
spectral PDE methods there are often fast OðN log NÞ techniques to compute Ay
using only O(N) storage (A is stored implicitly), based on fast Fourier transform
(FFT) algorithms [53, 57]. In a BEM, where A is again dense, a variety of
sophisticated methods that require only OðN log NÞ computation time and OðNÞ
storage to compute Ay (again storing A implicitly) have been developed [1, 3, 7,
71], beginning with the pioneering fast-multipole method (FMM) [72]. These fast
BEMs exploit the localized basis and the decaying, convolutional nature of the
Green’s function to approximate long-range interactions (to any desired accuracy).
FMMs can be viewed as an approximate factorizations into sparse matrices, at
which point sparse-direct methods are also applicable [73]. A second wrinkle is that
the convergence rates of iterative methods depend on the condition number of
A (the ratio of largest and smallest singular values) [65, 67], and condition numbers
generally worsen as the ratio of the largest and smallest lengthscales in the problem
increases. To combat this, users of iterative methods employ preconditioning
techniques: instead of solving Ax ¼ b, one solves KAx ¼ Kb or similar, where the
preconditioning matrix K is some crude approximate inverse for A (but much
simpler to compute than A�1!) such that the condition number of KA is reduced
[67]. The difficulty with this approach is that good preconditioners tend to be highly
problem-dependent, although a variety of useful approaches such as incomplete
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factorization and coarse-grid/multigrid approximations have been identified
[65, 67]. The upshot is that, while the largest-scale solvers almost invariably use
iterative techniques, for any given class of physical problems it sometimes takes
significant research before the iterative approach becomes well-optimized.

6.3 The Impracticality of Eigenmode Summations

Perhaps the simplest way to express the Casimir energy, at zero temperature, is as
a sum of zero-point energies of all oscillating EM modes in the system:

U ¼
X

x

�hx
2
; ð6:1Þ

where x is the frequency of the mode ð� e�ixtÞ [28, 74]. That is, when the
electromagnetic field is quantized into photons with energy �hx, it turns out that the
vacuum state in the absence of photons is not empty, but rather has the energy
equivalent of ‘‘half a photon’’ in each mode. The computational strategy is then
straightforward, in principle: compute the EM eigenfrequencies x in the problem
by some numerical method (many techniques are available for computing eigen-
frequencies [1, 57]) and sum them to obtain U. Forces are then given by the
derivative of U with respect to changes in the geometry, which could be
approximated by finite differences or differentiated analytically with a Hellman–
Feynman technique [75] (more generally, derivatives of any computed quantity
can be computed efficiently by an adjoint method [76]).

Of course, U in (6.1) has the disadvantage of being formally infinite, but this is
actually a minor problem in practice: as soon as one discretizes the problem into a
finite number of degrees of freedom (e.g., a finite number of grid points), the
number of eigenfrequencies becomes finite (with the upper bound representing a
Nyquist-like frequency of the grid). This is the numerical analogue [12] of
analytical regularization techniques that are applied to truncate the same sum in
analytical computations [28]. (These regularizations do not affect energy differ-
ences or forces for rigid-body motions.) Matters are also somewhat subtle for
dissipative or open systems [77]. But the most serious problem is that, even in the
lossless case, this sum is badly behaved: even when one differentiates with sepa-
ration a to obtain a finite force F ¼ � �h

2

P
dx
da , the summand is wildly oscillatory and

includes substantial contributions from essentially every frequency, which mostly
cancel to leave a tiny result [12, 78]. Numerically, therefore, one must ostensibly
compute all of the modes, to high precision, which requires OðN3Þ time and OðN2Þ
storage (for a dense-direct eigensolver [65]) given N degrees of freedom. This is
possible in simple 1d problems [12, 40], but is impractical as a general approach.

Because of the mathematical equivalence of the different approaches to the
Casimir problem, the mode-summation method is sometimes useful as a starting
point to derive alternative formulations, but the end result is invariably quite
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different in spirit from computing the eigenfrequencies one by one and summing
them. For example, if one has a function zðxÞ whose roots are the eigenfre-
quencies, then one can equivalently write U, via the residue theorem of complex

analysis, as U ¼ 1
2pi

H
C

�hx
2

d½ln zðxÞ�
dx dx, where C is any closed contour in the com-

plex-x plane that encloses the roots [79]. However, finding functions whose roots
are the eigenfrequencies naturally points towards Green’s functions (to relate
different boundary conditions), and the contour choices typically involve Wick
rotation as in Sect. 6.4, so this approach leads directly to imaginary-frequency
scattering-matrix techniques as in Sect. 6.6 [18]. A similar contour integral arises
from a zeta-function regularization of (6.1) [80].

6.4 The Complex-Frequency Plane and Contour Choices

In order to better understand the frequency integration/summation in Casimir
problems, it is illustrative to examine the analytical formula for the simple case of
two perfect-metal plates in vacuum separated by a distance a, in which case it can
be derived in a variety of ways that the attractive force F is given by [81]:

F ¼ �h

p2c3
Re

Z1

0

dx
Z1

1

dp
p2x3

e2ipðxþi0þÞa=c � 1

2
4

3
5

¼ Re

Z1

0

f ðxÞdx

2
4

3
5 ¼ Im

Z1

0

f ðinÞdn

2
4

3
5 ¼ �hc

240a4
; ð6:2Þ

where f ðxÞ is the contribution of each frequency x to the force and p is related to
the plate-parallel momentum of the contributing modes/fluctuations. In this special
case, the entire integral can be performed analytically, but for parallel plates of
some finite permittivity e the generalization (the Lifshitz formula [81]) must be
integrated numerically. In practice, however, the formula and its generalizations
are never integrated in the form at left—instead, one uses the technique of contour
integration from complex analysis to Wick rotate the integral to imaginary fre-
quencies x ¼ in, integrating over n. (In fact, the formula is typically derived
starting in imaginary frequencies, via a Matsubara approach [81].) In this section,
we review why a trick of this sort is both possible and essential in numerical
computations for all of the methods described below.

Wick rotation is always possible as a consequence of causality. It turns out that
the frequency contributions f ðxÞ for arbitrary materials and geometries, for all of
the different formulations of the Casimir force below, are ultimately expressed in
terms of classical EM Green’s functions at x: the EM fields in response to time-
harmonic currents J� e�ixt. As a consequence of the causality of Maxwell’s
equations and physical materials—EM fields always arise after the source currents,
not before—it mathematically follows that the Green’s functions must be analytic
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functions (no poles or other singularities) when Im x [ 0 (the upper-half complex
plane) [41]. Poles in the Green’s function correspond to eigenfrequencies or
resonances of the source-free Maxwell’s equations, and must lie at Im x	 0 for any
physical system with dissipative materials (with the poles approaching Im x ¼ 0�

in the idealized lossless limit). [One can easily see explicitly that this is true for the
f ðxÞ above: the poles result from a vanishing denominator in the p integrand, which
only occurs for purely real x corresponding to the real-frequency modes trapped
between two perfect-metal plates.] As an elementary consequence of complex
analysis, this analyticity means that the

R
dx can be arbitrarily deformed to any

contour in the upper-half complex-x plane without changing the integration result.
Wick rotation is essential for computation because the frequency contributions

f ðxÞ to the force (or interaction energy or other related quantities) are extremely
ill-behaved near to the real-x axis: they are wildly oscillatory and slowly
decaying. For example, the magnitude and phase of the function f ðxÞ are plotted
in the complex x plane in Fig. 6.1, where the p integral was evaluated numerically
with a high-order Clenshaw–Curtis quadrature scheme [82]. Merely evaluating
f ðxÞ along the real-x axis is difficult because of singularities (which ultimately
reduce the integral to a summation over eigenfrequency-contributions as in
Sect. 6.3); in physical materials with dissipation, the real-x axis is non-singular
but is still badly behaved because of poles (lossy modes) located just below the
axis. Along any contour parallel to the real-x axis, the integrand is oscillatory
(as can be seen from the phase plot) and non-decaying (as can be seen from the
magnitude plot): formally, just as with the infinite summation over eigenmodes in
Sect. 6.3, one must integrate over an infinite bandwidth, regularized in some way
(e.g. by the Nyquist frequency placing an upper bound on x for a finite grid),
where the oscillations almost entirely cancel to leave a tiny remainder (the force).

Fig. 6.1 Contributions f ðxÞ to the Casimir force, from each fluctuation/mode frequency x, for
two perfect-metal plates with separation a, in the complex-x plane. Left: magnitude jf ðxÞj. Right:
phase \f ðxÞ. [The magnitude is truncated at 103�h=a3, as it diverges towards the real-x axis, and
some numerical artifacts (rapid oscillations) are visible near the real-x axis in the phase due to
difficulty in evaluating f ðxÞ.] The key point is that f ðxÞ is badly behaved (oscillatory and non-
decaying) along contours parallel to the real-x axis, whereas f ðxÞ is nicely behaved (non-
oscillatory and exponentially decaying) along contours parallel to the imaginary-x axis
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(Any physical materials must cease to polarize as x!1 where the susceptibility
vanishes [41], which will make the force contributions eventually vanish as x!
1 even in 1d, but a very wide-bandwidth oscillatory integral is still required.) This
is a disaster for any numerical method—even when one is only integrating an
analytical expression such as the Lifshitz formula, mere roundoff errors are a
severe difficulty for real x. Along the imaginary-x axis, on the other hand (or any
sufficiently vertical contour), f ðxÞ is exponentially decaying and mostly non-
oscillatory—an ideal situation for numerical integration.

Therefore, in order for classical EM solvers to be used for Casimir problems,
they need to be adapted to solve Maxwell’s equations at complex or imaginary x.
Although this sounds strange at first, the frequency-domain problem actually
becomes numerically easier in every way at imaginary x; this is discussed in more
detail in Sect. 6.5.1.2. In fact, one can even identify an exact mathematical
equivalence between a particular complex-x contour and a real-frequency system
where an artificial dissipation has been introduced, as discussed in Sect. 6.5.5
below—using this trick, one can actually use classical EM solvers with no mod-
ification at all, as long as they handle dissipative media. In any case, one needs an
integral over frequencies to compute a physically meaningful quantity, which
means that solvers and material models, not to mention any physical intuition used
for guidance, must be valid for more than just a narrow real-x bandwidth (unlike
most problems in classical EM).

Numerically, it should be pointed out that the f ðinÞ integrand is smooth and
exponentially decaying, and so the n integral can be approximated to high accuracy
by an exponentially convergent quadrature (numerical integration) scheme using
evaluations at relatively few points n. For example, one can use Gauss–Laguerre
quadrature [83], Gaussian quadrature with an appropriate change of variables [84],
or Clenshaw–Curtis quadrature with an appropriate change of variables [82].

6.5 Mean Energy/Force Densities and the
Fluctuation–Dissipation Theorem

Another, equivalent, viewpoint on Casimir interactions is that they arise from
geometry-dependent fluctuations of the electromagnetic fields E and H, which on
average have some nonzero energy density and exert a force. If we can compute
these average fields, we can integrate the resulting energy density, stress tensors,
and so on, to obtain the energy, force, or other quantities of interest. The good
news is that there is a simple expression for those fluctuations in terms of the
fluctuation–dissipation theorem of statistical physics: the correlation function of
the fields is related to the corresponding classical Green’s function [81]. Ulti-
mately, this means that any standard classical EM technique to compute Green’s
functions (fields from currents) can be applied to compute Casimir forces, with the
caveat that the techniques must be slightly modified to work at imaginary or
complex frequencies as described below.
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6.5.1 Background

The temperature-T correlation function for the fluctuating electric field at a given
frequency x is given by [81]:

hEjðxÞEkðx0Þix ¼ �
�h

p
Im x2GE

jkðx; x; x0Þ
h i

cothð�hx=2kBTÞ; ð6:3Þ

where GE
jk ¼ ðGE

k Þj is the classical dyadic ‘‘photon’’ Green’s function, propor-
tional4 to the relationship between an electric-dipole current in the k direction at x0

to the electric field at x, and solves

r� lðx; xÞ�1r��x2eðx; xÞ
h i

GE
k ðx; x; x0Þ ¼ d3ðx� x0Þêk; ð6:4Þ

where e is the electric permittivity tensor, l is the magnetic permeability tensor,
and êk is a unit vector in direction k. Similarly, the magnetic-field correlation
function is

hHjðxÞHkðx0Þix ¼ �
�h

p
Im x2GH

jkðx; x; x0Þ
h i

cothð�hx=2kBTÞ: ð6:5Þ

The magnetic Green’s function GH can be defined in two essentially equivalent
ways. The first is as derivatives 1

x2lðxÞ r �GE �r0 1
lðx0Þ of the electric Green’s

function GE
jkðx; x0Þ, where r and r0 denote derivatives with respect to x and x0ðr0

acting to the left), respectively [81]. The second way to define GH is proportional
to the magnetic field in response to a magnetic-dipole current, analogous to (6.4):

r� eðx; xÞ�1r��x2lðx; xÞ
h i

GH
k ðx; x; x0Þ ¼ d3ðx� x0Þêk; ð6:6Þ

which can be more convenient for numerical calculation [13]. These two defini-
tions are related [85] by GH ¼ 1

x2lðxÞ r �GE �r0 1
lðx0Þ � 1

x2lðx0Þ dðx� x0ÞI (with

I being the 3� 3 identity matrix),5 where the second (diagonal) term has no effect
on energy differences or forces below and is therefore irrelevant. Now, these
equations are rather nasty along the real-x axis: not only will there be poles in G
just below the axis corresponding to lossy modes, but in the limit where the
dissipative losses vanish (e and l become real), the combination of the poles

4 The electric field EðxÞ from a dipole current J ¼ d3ðx� x0Þêke�ixt is EðxÞ ¼ ixGE
k

ðx; x; x0Þe�ixt.
5 This can be seen more explicity by substituting GH ¼ 1

x2
1
lr�GE �r0 1

l0 � 1
x2l0 d into (6.6),

with d denoting dðx� x0ÞI and l or l0 denoting lðxÞ or lðx0Þ, respectively. In particular,
½r � 1

er��x2l�ð 1
x2

1
lr�GE �r0 1

l0 � 1
x2l0 dÞ yields r� ½ 1

x2er� 1
lr�GE �GE� �

r0 1
l0 � r� 1

x2l0er� dþ d, which via (6.4) gives þr� 1
x2e d�r0 1

l0 � r � 1
x2l0er� dþ d ¼

d as desired, where in the last step we have used the fact that d�r0 ¼ r � d [since r� is
antisymmetric under transposition and r0dðx� x0Þ ¼ �rdðx� x0Þ].
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approaching the real axis with the Im in the correlation function results in a delta
function at each pole6 and integrals of the correlation functions turn into sums over
modes as in Sect. 6.3 However, the saving grace, as pointed out in Sect. 6.4, is that
Green’s functions are causal, allowing us to transform any integral over all real
fluctuation frequencies into an integral over imaginary fluctuation frequencies
x ¼ in. The coth factor has poles that alter this picture, but we will eliminate those
for now by considering only the T ¼ 0þ case where cothðþ1Þ ¼ 1, returning to
nonzero temperatures in Sect. 6.8.

6.5.1.1 Energy Density

In particular, to compute the Casimir energy U, we merely integrate the classical
energy density in the EM field [41] over all positions and all fluctuation fre-
quencies, Wick-rotated to an integral over imaginary frequencies, resulting in the
expression:

U ¼
Z1

0

dn
Z

1
2

dðneÞ
dn
hjEj2iin þ

dðnlÞ
dn
hjHj2iin

� �
d3x; ð6:7Þ

where we have simplified to the case of isotropic materials (scalar e and l). At
thermodynamic equilibrium, this expression remains valid even for arbitrary dis-
sipative/dispersive media thanks to a direct equivalence with a path-integral
expression [87], which is not obvious from the classical viewpoint in which the
energy density is usually only derived in the approximation of negligible
absorption [41]. (Thanks to the relationship between the Green’s function and the
local density of states [88], there is also a direct equivalence between this energy
integral and eigenmode summation [12].) In the common case where l has neg-
ligible frequency dependence (magnetic responses are usually negligible at the
short wavelengths where Casimir forces are important, so that l � l0), we can use

the identity7 that
R

ejEj2 ¼
R

ljHj2 for fields at any given frequency [6] to simplify
this expression to [12]:

6 This follows from the standard identity that the limit Im½ðxþ i0þÞ�1�, viewed as a
distribution, yields �pdðxÞ [86].
7 Lest the application of this field identity appear too glib, we can also obtain the same equality

directly from the Green’s functions in the correlation functions. We have
R

lhjHj2i ¼
�h
p tr
R

n2lGHðx; xÞ, and from the identity after (6.6) we know that n2lGH ¼ �r�G�r0
1
l0 þ d. However, because r� is self-adjoint [6], we can integrate by parts to move r� from

the first argument/index of GE to the second, obtaining �GE �r0 1
l0 � r0 ¼ n2e0GE � d from

the first term under the integral. (Here, we employ the fact that GE is real-symmetric at
imaginary x ¼ in, from Sect. 6.5.1.2, to apply (6.10) to the second index/argument instead of
the first.) This cancels the other delta from n2lGH and leaves n2eGE, giving ehjEj2i as desired.
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U ¼
Z1

0

dn
Z

1
2n

dðn2eÞ
dn
hjEj2iind3x: ð6:8Þ

Here, the zero-temperature imaginary-frequency mean-square electric field is
given by:

hjEðxÞj2iin ¼
�h

p
n2trGEðin; x; xÞ; ð6:9Þ

where tr denotes the trace
P

j GE
jj and the Im has disappeared compared to (6.3)

because GEðin) is real and the Im cancels the i in dx! idn.
Equation (6.13) may at first strike one as odd, because one is evaluating the

Green’s function (field) at x from a source at x, which is formally infinite. This is
yet another instance of the formal infinities that appear in Casimir problems,
similar to the infinite sum over modes in Sect. 6.3. In practice, this is not a problem
either analytically or numerically. Analytically, one typically regularizes the
problem by subtracting off the vacuum Green’s function (equivalent to only
looking at the portion of the fields at x which are reflected off of inhomogeneities
in e or l) [81]. Numerically, in an FD or FEM method with a finite grid,
the Green’s function is everywhere finite (the grid is its own regularization) [12].
In a BEM, the Green’s function is explicitly written as a sum of the vacuum field
and scattered fields, so the former can again be subtracted analytically [12]. As in
Sect. 6.3, these regularizations do not affect physically observable quantities such
as forces or energy differences, assuming rigid-body motion.

6.5.1.2 The Remarkable Imaginary-Frequency Green’s Function

This imaginary-frequency Green’s function is actually a remarkably nice object.
Wick-rotating (6.4), it satisfies:

r� lðin; xÞ�1r� þ n2eðin; xÞ
h i

GE
k ðin; x; x0Þ ¼ d3ðx� x0Þêk: ð6:10Þ

Because of causality, it turns out that e and l are strictly real-symmetric and
positive-definite (in the absence of gain) along the imaginary-frequency axis,
even for dissipative/dispersive materials [41]. Furthermore, the operator r�
l�1r� is real-symmetric positive-semidefinite for a positive-definite real-
symmetric l [6]. Thus, the entire bracketed operator ½� � �� in (6.10) is
real-symmetric positive-definite for n[ 0, which lends itself to some of the best
numerical solution techniques (Cholesky decomposition [65], tridiagonal QR
[65], conjugate gradients [65, 67], and Rayleigh-quotient methods [68]).
(This definiteness is also another way of seeing the lack of poles or oscillations
for x ¼ in.) It follows that the integral operator whose kernel is GE, i.e. the
inverse of the ½� � �� operator in (6.10), is also real-symmetric positive-definite,
which is equally useful for integral-equation methods.
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In vacuum, the 3d real-x Green’s function � eixjx�x0j=c=jx� x0j [41] is
Wick-rotated to � e�njx�x0 j=c=jx� x0j, an exponentially decaying, non-oscillatory
function. This is yet another way of understanding why, for x ¼ in, there are no
interference effects and hence no ‘‘modes’’ (poles in G), and integrands tend to be
non-oscillatory and exponentially decaying (as n!1;G becomes exponentially
short-ranged and does not ‘‘see’’ the interacting objects, cutting off the force
contributions). (It also means, unfortunately, that a lot of the most interesting
phenomena in classical EM, which stem from interference effects and resonances,
may have very limited consequences for Casimir interactions.)

One other property we should mention is that the operator becomes semidefinite
for n ¼ 0, with a nullspace encompassing any static field distribution (r/ for any
scalar /). This corresponds to the well-known singularity of Maxwell’s equations at
zero frequency [89, 90], where the electric and magnetic fields decouple [41]. Since
we eventually integrate over n, the measure-zero contribution from n ¼ 0 does not
actually matter, and one can use a quadrature scheme that avoids evaluating n ¼ 0.
However, in the nonzero-temperature case of Sect. 6.8 one obtains a sum over
discrete-n contributions, in which case the zero-frequency term is explicitly present.
In this case, n ¼ 0 can be interpreted if necessary as the limit n! 0þ (which can be
obtained accurately in several ways, e.g. by Richardson extrapolation [91],
although some solvers need special care to be accurate at low frequency [89, 90]);
note, however, that there has been some controversy about the zero-frequency
contribution in the unphysical limit of perfect/dissipationless metals [92].

6.5.1.3 Stress Tensor

In practice, one often wants to know the Casimir force (or torque) on an object
rather than the energy density. In this case, instead of integrating an electromag-
netic energy density over the volume, one can integrate an electromagnetic stress
tensor over a surface enclosing the object in question, schematically depicted in
Fig. 6.2 [81]. The mean stress tensor for the Casimir force is [81]:

hTjkðxÞix ¼ eðx;xÞ hEjðxÞEkðxÞix �
djk

2

X
‘

hE‘ðxÞ2ix

" #

þ lðx;xÞ hHjðxÞHkðxÞi �
djk

2

X
‘

hH‘ðxÞ2ix

" #
: ð6:11Þ

As above, the field correlation functions are expressed in terms of the classical
Green’s function, and the integral of the contributions over all x is Wick-rotated to
imaginary frequencies x ¼ in:

F ¼
Z1

0

dn
ZZ



surface

hTðxÞiin � dS; ð6:12Þ
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with (zero-temperature) correlation functions

hEjðxÞEkðxÞiin ¼
�h

p
n2GE

jkðin; x; xÞ; ð6:13Þ

hHjðxÞHkðxÞiin ¼
�h

p
n2GH

jkðin; x; xÞ; ð6:14Þ

corresponding to the fields on the stress-integration surface in response to currents
placed on that surface. To compute a Casimir torque around an origin r, one
instead uses ðx� rÞ � hTðxÞiin � dS [93].

The derivation of this stress tensor (6.11) is not as straightforward as it might at
first appear. If the stress-integration surface lies entirely in vacuum e � e0 and
l � l0, then one can interpret (6.11) as merely the ordinary EM stress tensor from
the microscopic Maxwell equations [41], albeit integrated over fluctuations. If the
stress-integration surface lies in a dispersive/dissipative medium such as a fluid,
however, then the classical EM stress tensor is well known to be problematic [41]
and (6.11) may seem superficially incorrect. However, it turns out that these prob-
lems disappear in the context of thermodynamic equilibrium, where a more careful
free-energy derivation of the Casimir force from fluctuations indeed results in (6.11)
[81, 94],8 which has also proved consistent with experiments [95, 96]. Note also that,
while (6.11) assumes the special case of isotropic media at x, it can still be used to
evaluate the force on objects made of anisotropic materials, as long as the stress-
integration surface lies in an isotropic medium (e.g. vacuum or most fluids).

This formulation is especially important for methods that use an iterative solver
for the Green’s functions as discussed below, because it only requires solving for
the response to currents on the stress-integration surface, rather than currents at
every point in space to integrate the energy density, greatly reducing the number of
right-hand sides to be solved for the linear (6.10) [12]; additional reductions in the
number of right-hand sides are described in Sect. 6.5.6.

Fig. 6.2 Schematic
depiction of two objects
whose Casimir interaction is
desired. One computational
method involves integrating a
mean stress tensor around
some closed surface (dashed
line) surrounding an object,
yielding the force on that
object

8 If compressibility of the fluid and the density-dependence of e is not neglected, then there is an
additional oe=oq term in (6.11) resulting from fluctuations in the density q [81].
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6.5.2 Finite-Difference Frequency-Domain (FDFD)

In order to determine the Casimir energy or force, one evaluates the Green’s
function by solving (6.10) and then integrates the appropriate energy/force density
over volume/surface and over the imaginary frequency n. The central numerical
problem is then the determination of the Green’s function by solving a set of linear
equations corresponding to (6.10), and probably the simplest approach is based on a
finite-difference (FD) basis: space is divided into a uniform grid with some
resolution Dx, derivatives are turned into differences, and one solves (6.10) by some
method for every desired right-hand side. In classical EM (typically finding the field
from a given current at real x), this is known as a finite-difference frequency-
domain (FDFD) method, and has been widely used for many years [5, 49].

For example, in one dimension for z-directed currents/fields with l ¼ 1, (6.10)

becomes � d2

dx2 þ n2
� �

eGE
zz ¼ dðx� x0Þẑ. If we approximate GE

zzðnDx; x0Þ � Gn,

then the corresponding finite-difference equation, with a standard center-difference
approximation for d2=dx2 [50], is

�Gnþ1 � 2Gn þ Gn�1

Dx2
þ n2enGn ¼

dnn0

Dx
; ð6:15Þ

replacing the dðx� x0Þ with a discrete equivalent at n0. Equation (6.15) is a tridi-
agonal system of equations for the unknowns Gn. More generally, of course, one has
derivatives in the y and z directions and three unknown G (or E) components to
determine at each grid point. As mentioned in Sect. 6.2.2, it turns out that accurate
center-difference approximations for the r�r� operator in three dimensions are
better suited to a ‘‘staggered’’ grid, called a Yee grid [2, 49], in which different field
components are discretized at points slightly offset in space: e.g., Exð½nx þ 1

2�
Dx; nyDy; nzDzÞ;EyðnxDx; ½ny þ 1

2�Dy; nzDzÞ, and EzðnxDx; nyDy; ½nz þ 1
2�DzÞ for the

E field components. Note that any arbitrary frequency dependence of e is trivial to
include, because in frequency domain one is solving each n separately, and a perfect
electric conductor is simply the eðinÞ ! 1 limit.

One must, of course, somehow truncate the computational domain to a finite
region of space in order to obtain a finite number N of degrees of freedom. There are
many reasonable ways to do this because Casimir interactions are rapidly decaying
in space (force � 1=adþ1 or faster with distance a in d dimensions, at least for zero
temperature). One could simply terminate the domain with Dirichlet or periodic
boundary conditions, for example, and if the cell boundaries are far enough away
from the objects of interest then the boundary effects will be negligible (quite
different from classical EM problems at real x!) [12]. In classical EM, one com-
monly uses the more sophisticated approach of a perfectly matched layer (PML),
an artificial reflectionless absorbing material placed adjacent to the boundaries of
the computational domain to eliminate outgoing waves [2]. Mathematically, a PML

in a direction x is equivalent to a complex ‘‘coordinate stretching’’ d
dx!

1þ ir=xð Þ�1 d
dx for an artificial PML ‘‘conductivity’’ rðxÞ[ 0 [2, 97–99],
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where the 1=x factor is introduced to give an equal attenuation rate at all
frequencies. However, at imaginary frequencies x ¼ in, a PML therefore results

simply in a real coordinate stretching d
dx! 1þ r=nð Þ�1 d

dx: in a PDE with decaying,
non-oscillatory solutions (such as the imaginary-x Maxwell equations), it is well
known that a reasonable approach to truncating infinite domains is to perform a
(real) coordinate transformation that compresses space far away where the solution
is small [53]. A convenience of Maxwell’s equations is that any coordinate trans-
formation (real or complex) can be converted merely into a change of e and l [100],
so any PML can be expressed simply as a change of materials while keeping the
same PDE and discretization [98, 99].

Such a center-difference scheme is nominally second-order accurate, with
discretization errors that vanish as OðDx2Þ [2, 50]. One can also construct higher-
order difference approximations (based on more grid points per difference). As a
practical matter, however, the accuracy is limited instead by the treatment of
material interfaces where e changes discontinuously. If no special allowance is
made for these interfaces, the method still converges, but its convergence rate
is reduced by the discontinuity to OðDxÞ [54, 55, 101, 102] (unless one has
E polarization completely parallel to all interfaces so that there is no field
discontinuity). There are various schemes to restore second-order (or higher)
accuracy by employing specialized FD equations at the interfaces [54, 103], but an
especially simple scheme involves unmodified FD equations with modified
materials: it turns out that, if the discontinuous e is smoothed in a particular way
(to avoid introducing first-order errors by the smoothing itself), then second-order
accuracy can be restored [55, 101, 102].9

Given the FD equations, one must then choose a solution technique to
solve the resulting linear equations Ax ¼ b, where x is the Green’s function
(or field), b is the delta-function (or current) right-hand side, and A is the
discretized r� l�1r� þ n2e operator. Note that A is a real-symmetric positive-
definite matrix at imaginary frequencies, as discussed in Sect. 6.5.1.2. Because A is
sparse [only OðNÞ nonzero entries], one can utilize a sparse-direct Cholesky
factorization A ¼ RT R (R is upper-triangular) [66] (for which many software
packages are available [68]). Given this factorization, any right-hand side can be
solved quickly by backsubstitution, so one can quickly sum the energy density
over all grid points (essentially computing the trace of A�1) to find the Casimir
energy, or alternatively sum the stress tensor over a stress-integration surface to
find the force. Precisely such a sparse-direct FD method for the Casimir energy
was suggested by Pasquali and Maggs [23], albeit derived by a path-integral
log det expression that is mathematically equivalent to summing the energy density

9 Even if the e discontinuities are dealt with in this way, however, one may still fail to obtain
second-order accuracy if the geometry contains sharp corners, which limit the accuracy to
OðDxpÞ for some 1\p\2 [101]. This is an instance of Darboux’s principle: the convergence
rate of a numerical method is generally limited by the strongest singularity in the solution that
has not been explicitly compensated for [53].
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(6.8) [87]. The alternative is an iterative technique, and in this case A’s Hermitian
definiteness means that an ideal Krylov method, the conjugate-gradient method
[65, 67] can be employed [12]. The conjugate-gradient method requires OðNÞ
storage and time per iteration, and in the absence of preconditioning requires a
number of iterations in d dimensions proportional to the diameter OðN1=dÞ of the
grid for each right-hand side [104]. The stress-tensor approach reduces the number
of right-hand sides to be solved compared to energy-density integration: one only
needs to evaluate the Green’s function for sources on a stress-integration surface,

which has OðNd�1
d Þ points in d dimensions. This gives a total time complexity of

OðNÞ � OðN1=dÞ � OðNd�1
d Þ ¼ OðN2Þ for an unpreconditioned iterative method; an

ideal multigrid preconditioner can in principle reduce the number of iterations to
Oð1Þ [4, 105] (when N is increased by improving spatial resolution), yielding an

OðN2�1
dÞ time complexity. Substantial further improvements are obtained by

realizing that one does not, in fact, need to sum over every point on the stress-
integration surface, instead switching to a different spatial integration scheme
described in Sect. 6.5.6.

6.5.3 Boundary-Element Methods (BEMs)

In some sense, a volume discretization such as an FD method is too general: in
most physical situations, the medium is piecewise-constant, and one might want to
take advantage of this fact. In particular, for the basic problem of finding the field
in response to a current source at a given frequency, one can instead use a surface
integral-equation approach: the unknowns are surface currents on the interfaces
between homogeneous materials, and one solves for the surface currents so that the
total field (source + surface currents) satisfies the appropriate boundary conditions
at the interfaces [1, 3, 7]. For example, in the case of a perfect electric conductor,
the surface-current unknowns can be the physical electric currents J at the inter-
face, and the boundary condition is that of vanishing tangential E field.10 In the
case of permeable media e and l, the physical (bound) currents are volumetric
within the medium [e.g., the electric bound current is J ¼ �ixðe� e0ÞE], not
surface currents [41]. However, it turns out that one can introduce fictitious surface
electric and magnetic currents at all interfaces to provide enough degrees of
freedom to satisfy the boundary condition of continuous tangential E and H, and
thus to fully solve Maxwell’s equations. The application of this equivalence

10 This is known as an electric-field integral equation (EFIE); one can also express the equations
for perfect conductors in terms of boundary conditions enforced on magnetic fields (MFIE) or
some linear combination of the two (CFIE), and the most effective formulation is still a matter of
debate [90].
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principle11 to obtain surface integral equations for BEM is known as the PMCHW
approach (Poggio, Miller, Chang, Harrington, and Wu) [110–112]. In either case,
one has surface (electric and/or magnetic) currents Js, plus an external current
source J [e.g., the right-hand side of (6.4)], so one can express the E or H field at
any point x as a convolution of Jþ Js with the analytically known Green’s
function G0ðx� x0Þ of the corresponding homogeneous medium at x. In BEM, one
expresses Js, in turn, as a sum of localized basis functions bk associated with some
discrete mesh approximation of the surface. For example, Fig. 6.3 depicts a
standard triangular-type mesh of two objects, where there is a localized basis
function bk (inset) associated with each edge of this mesh such that bk is nonzero
only on the adjacent two triangles [63]; this is the RWG basis mentioned in Sect.
6.2.2. Abstractly, the resulting equations for the fields could then be written in the
following form:

fieldðxÞ ¼ G0 � ðJþ JsÞ ¼ G0 � Jþ
XN

k¼1

G0 � bkck; ð6:16Þ

where G0� denotes convolution with the (dyadic) analytical Green’s function of
the homogeneous medium at x, and ck are the unknown coefficients of each basis
function.12 (More generally, G0 � J could be replaced by any arbitrary incident

Fig. 6.3 Example triangular
mesh of the surfaces of two
objects for a BEM solver [9].
Associated with each edge
k is an ‘‘RWG’’ basis function
bk [63], schematically
represented in the inset,
which vanishes outside the
adjacent two triangles

11 The idea of solving scattering problems by introducing fictitous boundary currents had its
origins [106–109] many years before its application to BEM by Harrington [110] and subsequent
refinements.
12 Technically, only currents from surfaces bordering the medium of x contribute to this sum.
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field, regardless of how it is created.) In a Galerkin method (see Sect. 6.2.2), one
obtains N equations for the N unknowns ck by taking the inner product of both
sides of this equation (substituted into the appropriate boundary condition) with
the same basis functions bj (since they work just as well as a basis for the tan-
gential field as for the tangential surface currents). This ultimately results in a set
of linear equations Ac ¼ d, where the matrix A multiplying the unknown coeffi-
cients ck is given by

Ajk ¼
ZZ

�bjðxÞ �G0ðx� x0Þ � bkðx0Þd2xd2x0: ð6:17Þ

[For the case of a perfect conductor with a vanishing tangential E, the right-hand-
side d is given by dj ¼ �hbj;G0 � Ji ¼ �

RR
�bjðxÞ �G0ðx�~� x0Þ � Jðx0Þd2xd2x0.]

One then solves the linear system for the unknown coefficients ck, and hence for
the unknown surface currents Js. Implementing this technique is nontrivial because
the Ajk integrands (6.17) are singular for j ¼ k or for j adjacent to k, necessitating
specialized quadrature techniques for a given form of G0 [60, 61], but substantial
guidance from the past decades of literature on the subject is available.

Given these currents, one can then evaluate the electric or magnetic field at any
point x, not just on the surface, by evaluating (6.16) at that point. In particular, one
can evaluate the field correlation functions via the fluctuation-dissipation theorem
(6.3): hEjðxÞEkðxÞix is given in terms of the electric field in the j direction at x

from a delta-function current J in the k direction at x. Of course, as noted pre-
viously, this is infinite because the G0 � J term (the field from the delta function)
blows up at x, but in the Casimir case one is only interested in the change of the
correlation functions due to the geometry—so, one can use the standard trick [81]
of subtracting the vacuum contribution G0 � J and only computing the surface-
current contribution G0 � Js to the field at x. In this way, one can compute the
stress tensor, the energy density, and so on, as desired.

As explained in Sect. 6.4, the integral of contributions over all frequencies is
best performed at imaginary frequencies, so all of the above must use x ¼ in. This
only has the effect of Wick-rotating the homogeneous-medium dyadic Green’s
function G0 to the � e�njx�x0 j=jx� x0j imaginary-frequency Green’s function. This
makes the problem easier, in principle. First, the exponential decay cuts off long-
range interactions, making fast-solver techniques (see Sect. 6.2.3) potentially even
more effective. Second, the matrix A is now real-symmetric and positive-definite,
which allows the use of more efficient linear solvers as noted previously. Fortu-
nately, the 1=jx� x0j singularity of G0 is the same at real and imaginary fre-
quencies, allowing existing techniques for the integration of (6.17) to be leveraged.

At first glance, this approach seems most straightforwardly applicable to the
stress-tensor technique, as suggested in Ref. [12]: one uses the BEM solution to
evaluate the mean stress tensor hTi on any integration surface around a body,
integrating via some quadrature technique to obtain the force. If one uses a dense-
direct solver (when N is not too big), the Cholesky factorization of A can be
computed once for a given n and then many right-hand sides can be solved quickly
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via backsubstitution [65] in order to integrate hTi over the stress-integration
surface. Precisely such a dense-direct BEM stress-tensor method was recently
demonstrated to compute Casimir forces in two and three dimensions [19, 20]. As
described in Sect. 6.2.3, fast-solver techniques can be applied to multiply A by a
vector in OðN log NÞ time with OðNÞ storage; given a good preconditioner, this
implies that an iterative method such as conjugate-gradient (applicable since A is
real-symmetric positive-definite) could find hTi at a single x and n in OðN log NÞ
time. The remaining question is the number of points required for the surface
integral of hTi, which depends on why one is increasing N: either to increase
accuracy for a fixed geometry or to increase the complexity of the geometry for a
fixed accuracy. In the former case, the smoothness of hTi in x means that expo-
nentially convergent quadrature techniques are applicable, which converge much
faster than the (polynomial) BEM basis for the surface currents, so that ultimately
the number of stress-quadrature points13 should be independent of N and the
overall complexity becomes OðN log NÞ. In the latter case, for a fixed accuracy and
increasingly complex geometry (or smaller feature sizes), it appears likely that the
number of stress-quadrature points will increase with N, but detailed studies of this
scaling are not yet available.

It turns out that this BEM approach is closely related to the BEM path-integral
approach described in Sect. 6.6.3. Both approaches end up solving linear equations
with exactly the same matrix A of (6.17), with the same degrees of freedom. The
path-integral approach shows, however, that this same matrix can be applied to
compute the Casimir interaction energy as well as the force, with comparable
computational cost for dense solvers. Moreover, as explained below, expressing
the force in terms of the derivative of the path-integral energy results in a trace
expression that is conceptually equivalent to integrating a stress tensor over the
surface of an object, where the number of ‘‘quadrature points’’ is now exactly
equal to N. An unanswered question, at this point, is whether a fast solver can be
more efficiently (or more easily) exploited in the stress-tensor approach or in the
path-integral approach.

6.5.4 Other Possibilities: FEM and Spectral Methods

There are of course, many other frequency-domain techniques from classical EM
that could potentially be used to solve for the Green’s function and hence the

13 Numeric integration (quadrature) approximates an integral
R

f ðxÞdx by a sum
P

i f ðxiÞwi

over quadrature points xi with weights wi. There are many techniques for the selection of these
points and weights, and in general one can obtain an error that decreases exponentially fast with
the number of points for analytic integrands [53, 83, 84, 113]. Multidimensional quadrature,
sometimes called cubature, should be used to integrate the stress tensor over a 2d surface, and
numerous schemes have been developed for low-dimensional cubature [114, 115] (including
methods that adaptively place more quadrature points where they are most needed [116]). For
spherical integration surfaces (or surfaces that can be smoothly mapped to spheres), specialized
methods are available [117, 118].
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energy/force density. For example, one could use spectral integral-equation
methods, such as multipole expansions for spheres and cylinders [5], to compute
responses to currents, although the advantages of this approach compared to the
spectral path-integral approach in Sect. 6.6.2 are unclear. One can also solve the
PDE formulation of the Green’s function (6.10) using a finite-element (FEM)
approach with some general mesh; in principle, existing FEM techniques from
classical EM [1, 3, 4, 7] are straightforwardly applicable. One subtlety that arises
in FEM methods with a nonuniform resolution is the regularization, however [12].
In principle, as mentioned above, one needs to subtract the vacuum Green’s
function contribution from the field correlation functions in order to get a physical
result [since the vacuum Green’s function Gðx; x0Þ diverges as x0 ! x, although
the divergence is cut off by the the finite mesh resolution]. With a uniform mesh,
this vacuum contribution is the same everywhere in the mesh and hence
automatically integrates to zero in the force (when the stress tensor is integrated
over a closed surface or the energy is differentiated). For a nonuniform
mesh, however, the vacuum contribution varies at different points in space
with different resolution, so some ‘‘manual’’ regularization seems to be required
(e.g., subtracting a calculation with the same mesh but removing the objects).
These possibilities currently remain to be explored for Casimir physics.

6.5.5 Finite-Difference Time-Domain (FDTD) Methods

Casimir effects are fundamentally broad-bandwidth, integrating contributions of
fluctuations at all frequencies (real or imaginary), although the imaginary-frequency
response is dominated by a limited range of imaginary frequencies. In classical EM,
when a broad-bandwidth response is desired, such as a transmission or reflection
spectrum from some structure, there is a well-known alternative to computing the
contributions at each frequency separately—instead, one can simulate the same
problem in time, Fourier-transforming the response to a short pulse excitation in
order to obtain the broad-bandwidth response in a single time-domain simulation [6,
119]. The same ideas are applicable to the Casimir problem, with a few twists,
yielding a practical method [13, 27] that allows Casimir calculations to exploit off-
the-shelf time-domain solvers implementing the standard finite-difference
time-domain (FDTD) method [2]. There are two key components of this approach
[13]: first, converting the frequency integral to a time integral and, second, finding a
time-domain equivalent of the complex-fequency idea from Sect. 6.4.

As reviewed above, the mean fluctuations in the fields, such as hE2ðxÞix, can be
expressed in terms of the fields at x from a frequency-x current at x. If, instead of a
frequency-x current, one uses a current with dðtÞ time dependence, it follows by
linearity of (6.4) that the Fourier transform of the resulting fields must yield
exactly the same hE2ðxÞix. Roughly, the procedure could be expressed as follows:
First, we compute some function CðtÞ of the time-domain fields from a sequence of
simulations with dðtÞ sources, e.g. where CðtÞ is the result of spatially integrating
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the fields making up the mean stress tensor hTðxÞi [noting that each point x
involves several separate dðtÞ-response simulations]. Second, we Fourier transform
CðtÞ to obtain ~CðxÞ. Third, we obtain the force (or energy, etcetera) by integratingR

~CðxÞ~gðxÞdx with appropriate frequency-weighting factor ~gðxÞ (which may
come from the frequency dependence of e in hTi, a Jacobian factor from below,
etcetera). At this point, however, it is clear that the Fourier transform of C was
entirely unnecessary: because of the unitarity of the Fourier transform (the
Plancherel theorem),

R
~CðxÞ~gðxÞdx ¼

R
CðtÞgð�tÞdt. That is, we can compute

the force (or energy, etcetera) by starting with dðtÞ sources and simply integrating
the response CðtÞ in time (accumulated as the simulation progresses) multiplied by
some (precomputed, geometry-independent) kernel g(t) (which depends on tem-
perature if the coth factor is included for T [ 0). The details of this process, for the
case of the stress tensor, are described in Refs. [13, 27].

Although it turns out to be possible to carry out this time-integration process as-
is, we again find that a transformation into the complex-frequency plane is
desirable for practical computation (here, to reduce the required simulation time)
[13]. Transforming the frequency in a time-domain method, however, requires an
indirect approach. The central observation is that, in (6.4) for the electric-field
Green’s function GE, the frequency only appears explicitly in the x2e term,
together with e. So, any transformation of x can equivalently be viewed as a
transformation of e. In particular suppose that we wish to make some transfor-
mation x! xðnÞ to obtain an x in the upper-half complex plane, where n is a real
parameter (e.g. x ¼ in for a Wick rotation). Equivalently, we can view this as a
calculation at a real frequency n for a transformed complex material: x2eðx; xÞ !
n2ecðn; xÞ where the transformed material is [13, 120]

ecðn; xÞ ¼
x2ðnÞ

n2 eðxðnÞ; xÞ: ð6:18Þ

For example, a Wick rotation x! in is equivalent to operating at a real frequency
n with a material eðxÞ ! �eðinÞ. However, at this point we run into a problem:
multiplying e by �1 yields exponentially growing solutions at negative frequen-
cies [13, 120], and this will inevitably lead to exponential blowup in a time-
domain simulation (which cannot avoid exciting negative frequencies, if only from
roundoff noise). In order to obtain a useful time-domain simulation, we must
choose a contour xðnÞ that yields a causal, dissipative material ec, and one such

choice is xðnÞ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ir=n

p
for any constant r[ 0 [13, 120]. This yields

ec ¼ ð1þ ir=xÞe, where the ir=x term behaves exactly like an artificial con-
ductivity added everywhere in space. In the frequency-domain picture, we would
say from Sect. 6.4 that this xðnÞ contour will improve the computation by moving
away from the real-x axis, transforming the frequency integrand into something
exponentially decaying and less oscillatory. In the time-domain picture, the r term
adds a dissipation everywhere in space that causes CðtÞ to decay exponentially in
time, allowing us to truncate the simulation after a short time. As long as we
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include the appropriate Jacobian factor dx
dn in our frequency integral, absorbing it

into g(t), we will obtain the same result in a much shorter time. The computational
details of this transformation are described in Refs. [13, 27]. More generally, this
equivalence between the Casimir force and a relatively narrow-bandwidth real-
frequency response of a dissipative system potentially opens other avenues for the
understanding of Casimir physics [120].

The end result is a computational method for the Casimir force in which one
takes an off-the-shelf time-domain solver (real time/frequency), adds an artificial
conductivity r everywhere, and then accumulates the response CðtÞ to short
pulses multiplied by a precomputed (geometry independent) kernel gðtÞ. The
most common time-domain simulation technique in classical EM is the FDTD
method [2]. Essentially, FDTD works by taking the same spatial Yee discreti-
zation as in the FDFD method above, and then also discretizing time with some
time step Dt. The fields are then marched through time in steps of Dt, where
each time step requires OðNÞ work for N spatial grid points. Because the
complex-x contour is implemented entirely as a choice of materials ec, existing
FDTD software can be used without modification to compute Casimir forces, and
one can exploit powerful existing software implementing parallel calculations,
various dimensionalities and symmetries, general dispersive and anisotropic
materials, PML absorbing boundaries, and techniques for accurate handling of
discontinuous materials. One such FDTD package is available as free/open-
source software from our group [119], and we have included built-in facilities to
compute Casimir forces [121].

6.5.6 Accelerating FD Convergence

Finally, we should mention a few techniques that accelerate the convergence and
reduce the computational cost of the finite-difference approaches. These tech-
niques are not necessary for convergence, but they are simple to implement and
provide significant efficiency benefits.

The simplest technique is extrapolation in Dx: since the convergence rate of the
error with the spatial resolution Dx is generally known a priori, one can fit the
results computed at two or more resolutions in order to extrapolate to Dx! 0. The
generalization of this approach is known as Richardson extrapolation [91], and it
can essentially increase the convergence order cheaply, e.g., improving OðDxÞ to
OðDx2Þ [122].

Second, suppose one is computing the force between two objects A and B sur-
rounded by a homogeneous medium. If one of the objects, say B, is removed, then
(in principle) there should be no net remaining force on A. However, because of
discretization asymmetry, a computation with A alone will sometimes still give a
small net force, which converges to zero as Dx! 0. If this ‘‘error’’ force is
subtracted from the A–B force calculation, it turns out that the net error is reduced.
More generally, the error is greatly reduced if one computes the A–B force and
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then subtracts the ‘‘error’’ forces for A alone and for B alone, tripling the number of
computations but greatly reducing the resolution that is required for an accurate
result [12].

Third, when integrating the stress tensor hTðxÞiin over x to obtain the net
force (6.12), the most straightforward technique in FD is to simply sum over all
the grid points on the integration surface—recall that each point x requires a
linear solve (a different right-hand side) in frequency domain, or alternatively a
separate time-domain simulation (a separate current pulse). This is wasteful,
however, because hTðxÞiin is conceptually smoothly varying in space—if one
could evaluate it at arbitrary points x (as is possible in the BEM approach), an
exponentially convergent quadrature scheme could be exploited to obtain an
accurate integral with just a few x’s. This is not directly possible in an FD
method, but one can employ a related approach. If the integration surface is a
box aligned with the grid, one can expand the fields on each side of the box in a
cosine series (a discrete cosine transform, or DCT, since space is discrete)—this
generally converges rapidly, so only a small number terms from each side are
required for an accurate integration. But instead of putting in point sources,
obtaining the responses, and expanding the response in a cosine series, it is
equivalent (by linearity) to put in cosine sources directly instead of point
sources. [Mathematically, we are exploiting the fact that a delta function can be
expanded in any orthonormal basis bnðxÞ over the surface, such as a cosine
series, via: dðx� x0Þ ¼

P
n

�bnðx0ÞbnðxÞ. Substituting this into the right-hand side
of (6.10), each bnðxÞ acts like a current source and �bnðx0Þ scales the result, which
is eventually integrated over x0.] The details of this process and its convergence
rate are described in Ref. [27], but the consequence is that many fewer linear
systems (fewer right-hand sides) need be solved (either in frequency or time
domain) than if one solved for the stress tensor at each point individually.

6.6 Path Integrals and Scattering Matrices

Another formulation of Casimir interactions is to use a derivation based on path
integrals. Although the path-integral derivation itself is a bit unusual from the
perspective of classical EM, and there are several slightly different variations on
this idea in the literature, the end result is straightforward: Casimir energies and
forces are expressed in terms of log determinants and traces of classical scattering
matrices [10, 14–18, 21, 22, 24–26], or similarly the interaction matrices (6.17)
that arise in BEM formulations [9]. Here, we omit the details of the derivations and
focus mainly on the common case of piecewise-homogeneous materials, empha-
sizing the relationship of the resulting method to surface-integral equations from
classical EM via the approach in Ref. [9].

Path integrals relate the Casimir interaction energy U of a given configuration
to a functional integral over all possible vector-potential fields A. Assuming
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piecewise-homogeneous materials, the constraint that the fields in this path inte-
gral must satisfy the appropriate boundary conditions can be expressed in terms of
auxiliary fields J at the interfaces (a sort of Lagrange multiplier) [123].14 At this
point, the original functional integral over A can be performed analytically,
resulting in an energy expression involving a functional integral ZðnÞ over only the
auxiliary fields J at each imaginary frequency n, of the form (at zero temperature):

U ¼ � �hc

2p

Z1

0

log det
ZðnÞ

Z1ðnÞ
dn; ð6:19Þ

ZðnÞ ¼
Z
DJe�

1
2

RR
d2x
RR

d2x0JðxÞ�Gnðx�x0Þ�Jðx0Þ: ð6:20Þ

Here, Z1 denotes Z when the objects are at infinite separation (non-interacting),
regularizing U to just the (finite) interaction energy (See also the Chap. 5 by S.J.
Rahi et al. in this volume for additional discussion of path integrals and Casimir
interactions.) In the case of perfect electric conductors in vacuum, J can be
interpreted as a surface current on each conductor (enforcing the vanishing tan-
gential E field), and Gn is the vacuum Green’s function in the medium outside the
conductors [9]. For permeable media (finite e and l), it turns out that a formulation
closely related to the standard PMCHW integral-equation model (see Sect. 6.5.3)
can be obtained: J represents fictitious surface electric and magnetic currents on
each interface (derived from the continuity of the tangential E and H fields), with
Gn again being a homogeneous Green’s function (with one Z factor for each
contiguous homogeneous region) [124]. Alternatively, because there is a direct
correspondence between surface currents and the outgoing/scattered fields from a
given interface, ‘‘currents’’ J can be replaced by scattered fields, again related at
different points x and x0 by the Green’s function of the homogeneous medium; this
is typically derived directly from a T-matrix formalism [14, 22, 25, 26]. Here, we
will focus on the surface-current viewpoint, which is more common in the clas-
sical-EM integral-equation community.

The path integral (6.20) is somewhat exotic in classical EM, but it quickly
reduces to a manageable expression once an approximate (finite) basis bk is chosen
for the currents J. Expanding in this basis, J �

P
ckbkðxÞ and the functional

integral DJ is replaced by an ordinary integral over the basis coefficients
dc1 � � � dcN . Equation (6.20) is then a Gaussian integral that can be performed

analytically to obtain ZðnÞ ¼ #=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AðnÞ

p
for a proportionality constant # [9],

where Ajk ¼
R

�bj �Gn � bk is essentially the same as the BEM matrix (6.17), albeit

14 Alternatively, the path integral can be performed directly in A, resulting in an expression
equivalent to the sum over energy density in Sect. 6.5 [87] and which in an FD discretization
reduces in the same way to repeated solution of the Green’s-function diagonal at every point in
space [23].
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here in an arbitrary basis. In the log det of (6.19), proportionality constants and
exponents cancel, leaving:

U ¼ þ �hc

2p

Z1

0

log det A1ðnÞ�1AðnÞ
h i

dn: ð6:21Þ

Just as in Sect. 6.7, the use of a real-symmetric positive-definite homogeneous
Green’s function Gn at imaginary frequencies means that AðnÞ is also real-sym-
metric and positive-definite, ensuring positive real eigenvalues and hence a real
log det. Several further simplifications are possible, even before choosing a par-
ticular basis. For example, let p be the position of some object for which the force
F is desired. The components Fi of the force (in direction pi) can then be expressed
directly as a trace [9, 125]:

Fi ¼ �
dU

dpi
¼ � �hc

2p

Z1

0

tr A�1 oA

opi

� �
dn: ð6:22Þ

Equivalently, this trace is the sum of eigenvalues k of the generalized eigen-
problem oA

opi
v ¼ kAv; again, these k are real because A is real-symmetric positive-

definite and oA=opi is real-symmetric. (If dense-direct solvers are used, computing
A�1 oA

opi
via Cholesky factorization is much more efficient than computing eigen-

values, however [65].) The matrix A can be further block-decomposed in the usual
case where one is computing the interactions among two or more disjoint objects
(with disjoint surface currents J). For example, suppose that one has two objects 1
and 2, in which case one can write

A ¼
A11 A12

AT
12 A22;

� �
ð6:23Þ

where A11 and A22 couple currents on each object to other currents on the same
object, and A12 and AT

12 ¼ A21 couple currents on object 1 to object 2 and vice
versa. In the limit of infinite separation for A1, one obtains A12 ! 0 while A11 and
A22 are unchanged, and one can simplify the log det in (6.21) to

log det A1ðnÞ�1AðnÞ
h i

¼ log det I � A�1
22 AT

12A�1
11 A21

	 

: ð6:24Þ

Computationally, only A12 depends on the relative positions of the objects, and this
simplification immediately allows several computations to be re-used if the energy
or force is computed for multiple relative positions.

6.6.1 Monte-Carlo Path Integration

Before we continue, it should be noted that there also exists a fundamentally
different approach for evaluating a path-integral Casimir formulation. Instead of

6 Numerical Methods for Computing Casimir Interactions 203



reducing the problem to surface/scattering unknowns and analytically integrating
Z to obtain a matrix log det expression, it is possible to retain the original path-
integral expression, in terms of a functional integral over vector potentials A in the
volume, and perform this functional integral numerically via Monte-Carlo meth-
ods [126, 127]. This reduces to a Monte-Carlo integration of an action over all
possible closed-loop paths (‘‘worldlines’’), discretized into some number of points
per path. Because this technique is so different from typical classical EM com-
putations, it is difficult to directly compare with the other approaches in this
review. Evaluating its computational requirements involves a statistical analysis of
the scaling of the necessary number of paths and number of points per path with
the desired accuracy and the complexity of the geometry [12], which is not cur-
rently available. A difficulty with this technique is that it has currently only been
formulated for scalar fields with Dirichlet boundary conditions, not for the true
Casimir force of vector electromagnetism.

6.6.2 Spectral Methods

One choice of basis functions bk for the path-integral expressions above is a
spectral basis, and (mirroring the history of integral equations in classical EM)
this was the first approach applied in the Casimir problem. With cylindrical
objects, for example, the natural spectral basis is a Fourier-series eim/ in the
angular direction /. For planar surfaces the natural choice is a Fourier transform,
for spheres it is spherical harmonics Y‘m (or their vector equivalents [41]), and
for spheroids there are spheroidal harmonics [128]. Equivalently, instead of
thinking of surface currents expanded in a Fourier-like basis, one can think of
the scattered fields from each object expanded in the corresponding Fourier-like
basis (e.g. plane, cylindrical, or spherical waves), in which case A relates the
incoming to outgoing/scattered waves for each object; this has been called a
‘‘scattering-matrix’’ or ‘‘T-matrix’’ method and is the source of many pioneering
results for Casimir interactions of non-planar geometries [14, 22, 25, 26]. Even
for nonspherical/spheroidal objects, one can expand the scattered waves in vector
spherical harmonics [22], and a variety of numerical techniques have been
developed to relate a spherical-harmonic basis to the boundary conditions on
nonspherical surfaces [58]. These spectral scattering methods have their roots in
many classical techniques for EM scattering problems [56, 129] (See also the
Chap. 5 by S.J. Rahi et al. and Chap. 4 by A. Lambrecht et al. in this volume for
additional discussions of scattering techniques and Casimir interactions.) Here,
we will use the surface-current viewpoint rather than the equivalent scattered-
wave viewpoint.

Many simplifications occur in the interaction matrix A of (6.23) for geome-
tries with highly symmetrical objects and a corresponding spectral basis [22].
Consider, for example, the case of spherical objects, with surface currents
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expressed in a vector spherical-harmonic basis (spherical harmonics for two
polarizations [22]). In the interaction matrix Ajk ¼

RR
bjðxÞ �Gðx� x0Þ � bkðx0Þ,

the convolution
R

Gðx� x0Þ � bkðx0Þ of a Green’s function G with bk is known
analytically: it is just the outgoing spherical wave produced by a spherical-
harmonic current. If bj is another spherical-harmonic current on the same sphere,
then the orthogonality of the spherical harmonics means that the x integral of
bjðxÞ against the spherical wave is zero unless j ¼ k. Thus, the self-interaction
blocks A11 and A22 of (6.23), with an appropriate normalization, are simply
identity matrices. The A12 entries are given by the coupling of a spherical wave
from bk on sphere 2 with a spherical-harmonic basis function bj on sphere 1, but
again this integral can be expressed analytically, albeit as an infinite series: the
spherical wave from sphere 2 can be re-expressed in the basis of spherical waves
centered on sphere 1 via known translation identities of spherical waves, and as
a result A12 takes the form of a ‘‘translation matrix’’ [22]. Furthermore, if there
are only two spheres in the problem, then their spherical harmonics can be
expressed with respect to a common z axis passing through the centers of the
spheres, and a Y‘m on sphere 1 will only couple with a Y‘0m0 on sphere 2 if
m ¼ m0, greatly reducing the number of nonzero matrix elements. Related
identities are available for coupling cylindrical waves around different origins,
expanding spherical/cylindrical waves in terms of planewaves for coupling to
planar surfaces, and so on [22].

As was noted in Sect. 6.2.2, such a spectral basis can converge exponentially
fast if there are no singularities (e.g. corners) that were not accounted for ana-
lytically, and the method can even lend itself to analytical study. Especially for
cylinders and spheres, the method is simple to implement and allows rapid
exploration of many configurations; the corresponding classical ‘‘multipole
methods’’ are common in classical EM for cases where such shapes are of
particular interest [5]. On the other hand, as the objects become less and less
similar to the ‘‘natural’’ shape for a given basis (e.g. less spherical for spherical
harmonics), especially objects with corners or cusps, the spectral basis converges
more slowly [58]. Even for the interaction between two spheres or a sphere and
a plate, as the two surfaces approach one another the multipole expansion will
converge more slowly [25, 130, 131]—conceptually, a spherical-harmonic basis
has uniform angular resolution all over the sphere, whereas for two near-
touching surfaces one would rather have more resolution in the regions where
the surfaces are close (e.g. by using a nonuniform BEM mesh). This exponential
convergence of a spectral (spherical harmonic [22]) Casimir calculation is
depicted in Fig. 6.4 for the case of the Casimir interaction energy U between two
gold spheres of radius R ¼ 1 lm, for various surface-to-surface separations
a. The error DU=U decreases exponentially with the maximum spherical-har-
monic order ‘ [corresponding to N ¼ 4‘ð‘þ 2Þ degrees of freedom for two
spheres], but the exponential rate slows as a=R decreases. (On the other hand, for
small a=R a perturbative expansion or extrapolation may become applicable
[130].)
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6.6.3 Boundary-Element Methods (BEMs)

In a BEM, one meshes the interfaces, say into triangles, and uses a set of localized
basis functions bk as discussed in Sect. 6.5.3. In this case, the interaction matrix
A that arises in the path-integral formulation is exactly the same as the interaction
matrix that arises in classical BEM methods (albeit at an imaginary frequency),
and is the same as the matrix A that arises in a BEM stress-tensor approach as
described in Sect. 6.5.3 . The main difference, compared to the stress-tensor
approach, lies in how one uses the matrix A: instead of solving a sequence of linear
equations to find the mean stress tensor hTi at various points on a surface around

an object, one computes log det A or tr A�1 oA
opi

h i
to obtain the energy (6.21) or force

(6.22). We have demonstrated this approach for several three-dimensional
geometries, such as the crossed capsules of Fig. 6.3 [9].

If one is using dense-matrix techniques, the advantage of this approach over the
stress-tensor technique seems clear [9]: it avoids the complication of picking a
stress-integration surface and an appropriate surface-integration technique, and
allows the size of the linear system to be easily reduced via blocking as in (6.24).
The situation is less clear as one moves to larger and larger problems, in which
dense-matrix solvers become impractical and one requires an iterative method.
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Fig. 6.4 Fractional error DU=U in the Casimir interaction energy U between two gold spheres of
radius R ¼ 1 lm, for various surface-surface separations a, as a function of the maximum
spherical-harmonic order ‘ of the spectral path-integral (scattering-matrix/multipole) method.
The error converges exponentially with ‘, but the exponential rate slows as a=R shrinks.
(Calculations thanks to A. Rodriguez.)
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In that case, computing tr A�1 oA
opi

h i
straightforwardly requires N linear systems to

be solved; if each linear system can be solved in OðN log NÞ time with a fast solver
(as discussed in Sects. 6.2.3 and 6.5.3), then the overall complexity is OðN2 log NÞ
[with O(N) storage], whereas it is possible that the stress-tensor surface integral
may require fewer than N solves. On the other hand, there may be more efficient
ways to compute the trace (or log det) via low-rank approximations: for example,
if the trace (or log det) is dominated by a small number of extremal eigenvalues,
then these eigenvalues can be computed by an iterative method [68] with the
equivalent of�N linear solves. The real-symmetric property of A, as usual, means
that the most favorable iterative methods can be employed, such as a Lanczos or
Rayleigh-quotient method [68]. Another possibility might be sparse-direct solvers
via a fast-multipole decomposition [73]. The most efficient use of a fast
OðN log NÞ BEM solver in Casimir problems, whether by stress-tensor or path-
integral methods, remains an open question (and the answer may well be problem-
dependent).

In the BEM approach with localized basis functions, the tr A�1 oA
opi

h i
expression

for the force corresponds to a sum of a diagonal components for each surface
element, and in the exact limit of infinite resolution (infinitesimal elements) this
becomes an integral over the object surfaces. Expressing the force as a surface
integral of a quantity related to Green’s-function diagonals is obviously reminis-
cent of the stress-tensor integration from Sect. 6.5.1.3, and it turns out that one can
prove an exact equivalence using only vector calculus [124]. (At least one previous
author has already shown the algebraic equivalence of the stress tensor and the
derivative of the path-integral energy for forces between periodic plates [132].)

6.6.4 Hybrid BEM/Spectral Methods

It is possible, and sometimes very useful, to employ a hybrid of the BEM and
spectral techniques in the previous two sections. One can discretize a surface using
boundary elements, and use this discretization to solve for the scattering matrix Akk

of each object in a spectral basis such as spherical waves. That is, for any given
incident spherical wave, the outgoing field can be computed with BEM via (6.16)
and then decomposed into outgoing spherical waves to obtain one row/column of Akk

at a time; alternatively, the multipole decomposition of the outgoing wave can be
computed directly from the multipole moments of the excited surface currents Js

[41]. This approach appears to be especially attractive when one has complicated
objects, for which a localized BEM basis works well to express the boundary con-
ditions, but the interactions are only to be computed at relatively large separations
where the Casimir interaction is dominated by a few low-order multipole moments.
One can perform the BEM computation once per object and re-use the resulting
scattering matrix many times via the analytical translation matrices, allowing one to
efficiently compute interactions for many rearrangements of the same objects and/or
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for ‘‘dilute’’ media consisting of many copies of the same objects [133]. (Essentially,
this could be viewed as a form of low-rank approximation of the BEM matrix,
capturing the essential details relevant to moderate-range Casimir interactions in a
much smaller matrix.) Such a hybrid approach is less attractive for closer separa-
tions, however, in which the increasing number of relevant multipole moments will
eventually lead to an impractically large matrix to be computed.

6.6.5 Eigenmode-Expansion/RCWA Methods

Consider the case of the interaction between two corrugated surfaces depicted in
Fig 6.5, separated in the z direction. From the scattering-matrix viewpoint, it is
natural to consider scattering off of each object by planewaves. In this case, the
self-interaction matrices A�1

11 and A�1
22 can be re-expressed in terms of reflection

matrices R1 and R2 for each surface, relating the amplitudes of incident waves at
some plane (dashed line) above each surface to the reflected (specular and non-
specular) planewave amplitudes. The matrices A12 and A21 are replaced by a
diagonal matrix D12 ¼ DT

21 that relates the planewave amplitudes at the planes for
objects 1 and 2, separated by a distance a—at real frequencies, this would be a
phase factor, but at imaginary frequencies it is an exponential decay as discussed
below. This results in the following expression for the Casimir interaction energy:

U ¼ �hc

2p

Z1

0

log det I � R2D12R1D12½ �dn: ð6:25Þ

Alternatively, instead of viewing it as a special case of the T-matrix/scattering-
matrix idea [22], the same expression can be derived starting from an eigenmode-
summation approach [18].

The problem then reduces to computing the scattering of an incident planewave
off of a corrugated surface, with the scattered field decomposed into outgoing
planewaves. For this problem, one could use any of the tools of computational EM
(such as BEM, FD, and so on), but there is a notable method that is often well-
suited to the case of periodic surfaces, especially periodic surfaces with piecewise-
constant cross-sections15 (as in object 2 of Fig. 6.5). This method is called
eigenmode expansion [43–45] or rigorous coupled-wave analysis (RCWA) [46,
47], or alternatively a cross-section method [48]. RCWA has a long history
because it is closely tied to semi-analytical methods to study waveguides with
slowly/weakly varying cross-sections [48, 134]. An analogous method was
recently applied to Casimir problems [18]. In RCWA, one computes reflection and
scattering matrices at a given frequency x along some direction z by expanding the

15 See also the Chap. 4 by A. Lambrecht et al. in this volume for additional discussion of
Casimir interactions among periodic structures.
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fields at each z in the basis of the eigenmodes of the cross-section at that z (waves
with z dependence eibz at a given x, where b is called the propagation constant of
the mode). Along regions of uniform cross-section, the z dependence eibz of each
mode is known analytically and no computation is required (the mode amplitudes
are multiplied by a diagonal propagation matrix D). Regions of continuously
varying cross-section are approximated by breaking them up into a finite number
of constant–cross-section layers (as in object 1 of Fig. 6.5). At any z where the
cross-section changes, a change of basis is performed by matching boundary
conditions (the xy components of the fields must be continuous), yielding a
transfer matrix at that interface. All these transfer and propagation matrices can
then be combined to compute scattering/reflection matrices for an entire structure.

The main difference here from classical RCWA computations is that the modes
are computed at imaginary frequencies n. As in Sect. 6.5.1.2, this actually sim-
plifies the problem. At an imaginary frequency x ¼ in, the modes of a given cross-
section eðin; x; yÞ and lðin; x; yÞ with z dependence eibz ¼ e�czðc ¼ �ib) satisfy the
eigenequation (for isotropic materials) [135, 136]:

neþrxy� 1
nlrxy�

nlþrxy� 1
nerxy�

 !
Exy

Hxy

� �
¼ c

1

�1

�1

1

0
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1
CCCA

Exy

Hxy

� �
;

ð6:26Þ

where the xy subscript indicates a two-component vector with xy (transverse)
components. The operators on both the left- and right-hand sides are real-symmetric,
while the operator on the left-hand side is positive-definite, and as a result the
eigenvalues c are purely real. This means that the propagation constants b are purely

1

2

R1

R2a

Λ

z

Fig. 6.5 Schematic problem for which eigenmode-expansion is well suited: the interaction
between two corrugated surfaces, with period K. The Casimir problem reduces to computing the
reflection matrices R1 and R2 for each individual surface, in a planewave basis. Eigenmode
expansion works by expanding the field in each cross-section (dashed lines) in the basis of
eigenmodes of a z-invariant structure with that cross-section, and then matching boundary
conditions whenever the cross-section changes
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imaginary (all of the imaginary-frequency modes are evanescent in z), and the
analogues of incoming/outgoing waves are those that are exponentially decaying
towards/away from the surface. Moreover, the numerical problem of solving for
these eigenmodes in a given cross-section reduces to a positive-definite generalized
eigenvalue problem (a definite matrix pencil [69]), to which the most desirable
numerical solvers apply [68, 69] (unlike the classical real-x problem in which there
are both propagating and evanescent modes because the problem is indefinite [135,
136]). For homogeneous cross-sections (as in the space between the two objects), the
solutions are simply planewaves of the form eikxxþikyy�czþnt, where for vacuum

c ¼ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkxyj2 þ n2=c2

q
.

For sufficiently simple cross-sections, especially in two-dimensional or axi-
symmetric geometries, it is possible to solve for the modes analytically and hence
obtain the scattering matrices, and this is how the technique was first applied to the
Casimir problem [18]. For more general geometries, one can solve for the modes
numerically by a variety of techniques, such as by a transfer-matrix method in two
dimensions [43] or by a planewave expansion (in the xy cross-section) in three
dimensions [46]. Of course, one truncates to a finite number of modes via some
cutoff jcj (which follows automatically from discretizing the cross-section in a
finite grid, for example), and convergence is obtained in the limit as this cutoff
increases. Given a basis of eigenmodes with some cutoff, the process of con-
structing the scattering/reflection matrices is thoroughly discussed elsewhere [43–
47], so we do not review it here.

The strength of RCWA is that regions of uniform cross-section are handled with
at most a 2d discretization of the cross-section, independent of the thickness of the
region, so very thick or very thin layers can be solved efficiently. The main limitation
of RCWA methods is that the transfer matrices (and the resulting reflection matrices
R1 and R2) are dense N � N matrices, where N is the number of modes required for
convergence. If N is large, as in complicated three-dimensional structures, the
problem can quickly become impractical because of the OðN2Þ storage and OðN3Þ
computation requirements. The most favorable case is that of periodic structures
with relatively simple unit cells, in which case the problem can be reduced to that of
computing the modes of each periodic unit cell (with Bloch-periodic boundary
conditions) as discussed below, and RCWA can then be quite practical even in three
dimensions. Non-periodic structures, such as compact objects, can be handled by
perfectly matched layer (PML) absorbing boundaries [44], albeit at greater com-
putational cost because of the increased cross-section size.

6.7 Periodicity and Other Symmetries

In this section, we briefly discuss the issue of periodicity and other symmetries,
which can be exploited to greatly reduce the computational effort in Casimir
calculations just as for classical EM calculations.
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If a structure is periodic in the x direction with period K, as in Fig. 6.5, the
problem simplifies considerably because one can reduce the computation to a
single unit cell of thickness K. In particular, one imposes Bloch-periodic boundary
conditions—the fields at x ¼ K equal the fields at x ¼ 0 multiplied by a phase
factor eikxK—and computes the Casimir energy or force for each Bloch wavevector

kx separately, then integrates the result over kx via
R p=K
�p=Kð� � �Þdkx. This can be

derived in a variety of ways, for example by applying Bloch’s theorem [6] to
decompose the eigenmodes into Bloch-wave solutions for each kx, or by expanding
the delta functions of the fluctuation–dissipation approach in a Fourier series [12].
More generally, for any periodic unit cell, one can perform the Casimir energy/
force computation for the unit cell with Bloch periodic boundaries and then
integrate the Bloch wavevector k over the irreducible Brillouin zone (multiplied
by the volume ratio of the Brillouin zone and the irreducible Brillouin zone).

The specific case of continuous translational symmetry, say in the x direction,
corresponds K! 0 and one must integrate over all kx (the Brillouin zone is infi-
nite). Certain additional simplifications apply in the case of a perfect-metal struc-
ture with continuous translational symmetry, in which case the fields decompose
into two polarizations and the k integration can be performed implicitly [12].

Rotational symmetry can be handled similarly: the fields can be decomposed
into fields with eim/ angular dependence, and the total force or energy is the sum
over all integers m of the contributions for each m [27]. More generally, the
Casimir contributions can be decomposed into a sum of contributions from irre-
ducible representations of the symmetry group of the structure (e.g. all eigenmodes
can be classified into these representations [137, 138]); translational and rotational
symmetries are merely special cases. As another example, in a structure with a
mirror symmetry one could sum even- and odd-symmetry contributions (in fact,
this is the underlying reason for the TE/TM polarization decomposition in two
dimensions [6]).

6.8 Nonzero-Temperature Corrections

In the preceding sections, we discussed only the computation of Casimir interactions
at zero temperature T ¼ 0þ. However, the modification of any imaginary-frequency
expression for a Casimir interaction from T ¼ 0 to T [ 0 is almost trivial: one
simply performs a sum instead of an integral. If the T ¼ 0 interaction (energy, force,
etc.) is expressed as an integral

R1
0 CðnÞdn of some contributions CðnÞ at each

imaginary frequency n, then the T [ 0 interaction is well known to be simply [81]:

Z1

0

CðnÞdn! 2pkBT

�h

X1
n¼0

0
C

2pkBT

�h
n

� �
; ð6:27Þ
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where kB is Boltzmann’s constant and
P0 indicates a sum with weight 1

2 for the
n ¼ 0 term. The frequencies nn ¼ 2pkBTn=�h are known as Matsubara frequencies,
and the corresponding (imaginary) Matsubara wavelengths are kn ¼ 2p=nn ¼
kT=n where kT ¼ �h=kBT . The conversion of the T ¼ 0 integral into a summation
can be derived in a variety of ways, most directly by considering thermodynamics
in the Matsubara formalism [81]. Physically, this arises from the cothð�hx=2kTÞ
Bose–Einstein distribution factor that appears in the fluctuation–dissipation
expressions (6.3) for nonzero temperatures. When the contour integration is per-
formed over x, the coth introduces poles at �hx=2kT ¼ ipn that convert the integral
into a sum via the residue theorem (with the n ¼ 0 residue having half weight
because it lies on the real-x axis) [77]. As explained in Sect. 6.5.1.2, some care
must be applied in evaluating the n ¼ 0 term because of the well known singu-
larity of Maxwell’s equations at x ¼ 0 (where the E and H fields decouple), and
one may need to take the limit n! 0þ (although there is some controversy in the
unphysical case of perfect metals [92]).

Mathematically, the sum of (6.27) is exactly the same as a trapezoidal-rule
approximation for the T ¼ 0 integral, with equally spaced abscissas Dn ¼ 2p=kT

[53, 91, 139]. Thanks to the OðDn2Þ convergence of the trapezoidal rule [53], this
means that the T [ 0 result is quite close to the T ¼ 0 result unless CðnÞ varies
rapidly on the scale of 2p=kT . In particular, suppose that CðnÞ varies on a scale
2p=a, corresponding to some lengthscale a in the problem (typically from a sur-
face–surface separation). In that case, assuming CðnÞ has nonzero slope16 at n ¼
0þ (typical for interactions between realistic metal surfaces), then the nonzero-
T correction should be of order Oða2=k2

TÞ. At room temperature (T ¼ 300 KÞ;
kT � 7:6 lm, and the temperature corrections to Casimir interactions are typically
negligible for submicron separations [81, 140]. On the other hand, it is possible
that careful material and geometry choices may lead to larger temperature effects
[139]. There is also the possibility of interesting effects in nonequilibrium situa-
tions (objects at different temperatures) [141, 142], but such situations are beyond
the scope of this review.

6.9 Concluding Remarks

The area of numerical Casimir computations remains rich with opportunities.
Relatively few geometry and material combinations have as yet been explored, and
thus many newly answerable questions remain regarding the ways in which
Casimir phenomena can be modified by exploiting the degrees of freedom avail-
able in modern nanofabrication. In the regime of computational techniques, while
several effective methods have already been proposed and demonstrated, the

16 If CðnÞ has zero slope at n ¼ 0þ, then the trapezoidal rule differs from the integral by
OðDn4Þ or less, depending upon which derivative is nonzero at n ¼ 0þ [53].
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parallels with computational electromagnetism lead us to anticipate ongoing
improvements and developments for some time to come. The same parallels also
caution against any absolute ‘‘rankings’’ of the different approaches, as different
numerical techniques have always exhibited unique strengths and weaknesses in
both theory and practice. And because computer time is typically much less
expensive than programmer time, there is something to be said for methods that
may be theoretically suboptimal but are easy to implement (or are available off-
the-shelf) for very general geometries and materials. Nor is the value of analytical
and semi-analytical techniques diminished, but rather these approaches are freed
from the tedium of hand computation to focus on more fundamental questions.
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Chapter 7
Progress in Experimental Measurements
of the Surface–Surface Casimir Force:
Electrostatic Calibrations and Limitations
to Accuracy

Steve K. Lamoreaux

Abstract Several new experiments have extended studies of the Casimir force
into new and interesting regimes. This recent work will be briefly reviewed. With
this recent progress, new issues with background electrostatic effects have been
uncovered. The myriad of problems associated with both patch potentials and
electrostatic calibrations are discussed and the remaining open questions are
brought forward.

7.1 Introduction

Nowadays, it is unclear what it means to write a review article, or a review chapter
for a book, on a particular subject. This unclarity results simply from the ease with
which modern digital reference and citation resources can be used; with a mere
typing of a keyword or two into a computer hooked up to the internet, one has an
instant review of any field of interest. As such, at the present time, review articles
tend to be op-ed pieces that tend to be less than scientifically enlightening. Rather
than continue in the tradition of collecting up a series of electronic database
searches, I will give an overview of some recent experiments and also describe
how anomalous electrostatic effects might have affected the results of these
experiments. This Chapter is not meant to be a review of every paper in the
Casimir force experimental measurement field, but a review of what I consider
are the credible experiments, that have carried the field forward, that were per-
formed over the last decade or so. As such, there will be little mention of
experimental studies that have claimed 1% or better agreement, simply because it
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is unclear to me what these experiments really mean. If the reader is interested, a
recent review of this 1% level work is presented in [1]. Of course I admit freely
that my review presented here reflects my own opinions, however I hope the reader
accepts or rejects my points based on verifiable facts and an independent scientific
analysis. It must be remembered that simply because a paper appears in print, in a
credible and leading journal, it is not necessarily scientifically correct or accepted
by the community at large. Neither does the fact that work is funded by the DOE,
NSF, or DARPA (or other funding agencies beyond the realm of the U.S.A.)
guarantee its validity or broad acceptance in the scientific community. And perhaps
most interestingly as a remark on the general history of science, the ‘‘consensus
opinion’’ is not necessarily correct either. In particular, in the surface–surface
Casimir force measurement field, there have been more than a few ‘‘Comments’’
on various papers; the interested reader would do well to ignore most, but not
all, of these ‘‘Comments’’ as they are confusing, if not bogus, but certainly
inflammatory.

Watching the field develop since my 1997 experimental result [2], which served
as a watershed for new interest in surface–surface Casimir force measurements,
has been fascinating. I had no preconceived notions as to how large or small
the effect should be relative to the case of assumed simple perfect conductors
(e.g., ignoring effects like surface plasmons), but I had no illusions as to the
accuracy of my work, hence the words ‘‘Demonstration of the Casimir force’’ in
the title of my paper. I simply did not have the time or resources to perform a study
of possible systematic effects that likely limited the accuracy of my result; the
precision was at the 5% level, at the point of closest approach. Again the accuracy
of my result was, and remains, an open question, as it does for any experiment.

At the time the work reported in [2] was performed, there were no precision
calculations of the Casimir force for real materials. Describing the metal plates
with the simplest plasma model, for parallel plates, the correction to the force
compared to the perfect conducting case is [3, 4]

gðdÞ ¼ 1� 16
3

c

xpd
; ð7:1Þ

where gðdÞ is a force correction factor which varies with plate separation d,c is the
velocity of light, and xp is the plasma frequency, where the form of the permit-
tivity of the metal is

�ðxÞ ¼ 1�
x2

p

x2
; ð7:2Þ

which is valid at high frequency. As x approaches zero, (7.2) become invalid, and
in addition the effect of static conductivity must be included also. Equation (7.1)
can be easily modified for a sphere-plane geometry [2]. However, the magnitude of
this correction was certainly outside what was reasonable based on the precision of
my experiment, which appeared to be best described by plates with perfect con-
ductivity. There was some skepticism regarding the lack of a finite conductivity
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correction in my result, and although several theorists expressed interest in per-
forming a more accurate calculation, none did. Eventually I attempted the cal-
culations myself, with mixed results. My calculations were based on published
optical properties of Au and Cu, with the Cu calculations intended as a test case.
These calculations showed roughly 10–15% (for Cu) and 20–30% (for Au)
reductions in force, compared to perfect conductors, for distances of order one
micron; I eventually found an error in the radius of curvature of the spherical-
surface plate used in my experiment [5, 6] that lowered the experimentally mea-
sured force by 10%, but did not bring the experimental result into agreement
with my Au calculation. Later work showed that Au and Cu are nearly identical,
with my Cu result being the more accurate; the discrepancy was due to the way I
interpolated between data points in the tabulated optical data [7]. With the refined
calculation, my experiment and theory appeared to be in agreement, however by
this time I was skeptical of my results, as stated in the ensuing discussion, in [8].
Interestingly enough, I had spent considerable effort trying to find corrections that
would bring my experimental result into agreement with my original inaccurate
calculation, so I felt that I was prepared to comment against a new theoretical
result, obtained by Boström and Sernelius [9, 10], that leads to a major correction to
the Casimir force between real, non-superconducting materials. This correction
reduces the force by a full factor of two at large separations. More will be said of
this correction later in this review; in particular, in light of new electrostatic sys-
tematic effects that have recently been discovered, the rhetoric against the result of
Boström and Sernelius no longer appears as certain. In addition, all of the 1% work
that was reported before [9, 10] does not show the predicted correction, nor does
subsequent 1% level work. So we are faced with the possibility that the degree of
precision isn’t as high as stated in the 1% work, or that the theory is not at all
understood. Instead of questioning experimental accuracy, new fantastic theoretical
suggestions have been made, regarding the low frequency permittivity of metals,
that eliminate the new correction. This remains a major open topic in the field.

There is a tendency among workers in this field to confuse precision with
accuracy, of which I am guilty myself. Precision relates to the number of sig-
nificant figures a measurement device or system provides; lots of digits can be
useful for detecting small changes in some ‘‘large’’ parameter, assuming that
the system is stable. Accuracy is the assignment of meaning to precision, it is the
connection between accepted definitions of, for example, lengths, voltages, and
forces, and the measurements that come out of an experimental apparatus. As an
example, for Casimir force measurements using the sphere-plane geometry, an
essential parameter is the radius of curvature of the sphere. A radius of curvature
accuracy of 0.5% for a sphere of 0.2 mm diameter corresponds to 1000 nm, a bit
larger than the wavelength of visible light. Thus optical measurements of adequate
accuracy appear as hopeless; can electron microscopy attain this level of preci-
sion? The answer is not obvious. Of course, an experiment can be designed that
does not require a high accuracy radius of curvature measurement, e.g., when the
ratio of Casimir to electrostatic force is measured. Nonetheless, the attention to
this problem in those works reporting 1% or better accuracy does not appear as
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sufficient to warrant such accuracy claims. The precision might be that level, but
the cross checks required for accurate work are missing.

In general, to attain a given experimental accuracy, say 1%, requires that the
calibrations and force measurements must be done to much better than 1% accuracy,
particularly for comparisons between theory and experiment with no adjustable
parameters. As there are possibly five or more absolute measurements that must be
made to interpret an experiment, a reasonable requirement for the average calibration
accuracy is 0.5%, assuming that the uncertainties can be added in quadrature (this
point is open to debate; many precision measurement experts insist that the uncer-
tainties be simply added, which bring the required average accuracy to the 0.2%
level). Some of the required calibrations are as follows: The optical properties of the
surfaces must be adequately characterized to allow calculation of the force to 0.5%
accuracy; the radius of curvature of the spherical surface (for a sphere-plane
experiment) needs to be measured to 0.5% accuracy; the absolute separation must be
determined to high accuracy. This last point is perhaps the most difficult, as

dF

F

����
���� ¼ n

dd

d

����
����; ð7:3Þ

where n is the exponent in the power law. For a sphere-plane geometry where
n � �3 we see immediately that if we want 0.5% force accuracy as limited by
the distance measurement, at the point of closest approach, say 100 nm, then the
fractional error must be 0.5%/3 or about 0.17%, and when d ¼ 100 nm this cor-
responds to dd ¼ 0:17 nm ¼ 1:7 Å: This is at the level where, in the atomic force
microscopy (AFM) community, the definition of the surface location is agreed as
controversial. So we see immediately that it is pointless to include any discussion
of experiments that claim 1% accuracy as the radius measurement is not discussed
in sufficient detail in any of the papers making such claims. My statements here
should be considered as a call for details.

The general experimental techniques used in all Casimir experiments to date are
rather straightforward. Many experiments employ AFM or micromechanical
techniques drawn from fields that enjoy tremendous engineering support. The trick
of Casimir force measurements lies in the attainment of very high force mea-
surement sensitivity subjected to precise and rigorous calibrations, and in the
elimination of long-range background electrostatic effects that can mask or distort
the now-well-studied AFM signals extrapolated to very large distances. At large
distances, the attractive force between two surfaces, ‘‘the’’ Casimir force, becomes
a property of the bulk material(s) that the plates comprise, and is viewed as a
fundamental physical effect arising from the quantum vacuum, as opposed to AFM
signals used to detect surface roughness, for example. Experimental rigor is
required to transform precision into accuracy on the fundamental vacuum effect.

Because the measurement techniques are largely borrowed from other fields, I
will not give a nuts and bolts discussion of measurements in this review, for the
simple reason that I know nothing about AFM techniques. Nowadays one can
simply buy an AFM system from Veeco, for example, and adapt it to the samples
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and longer distance ranges required for Casimir measurement. There are compa-
nies that commercially produce bare cantilevers, and most engineering schools
have fabrication facilities where NEMs and MEMs systems can be produced with
just about any desired properties in configurations limited only by the imagination.
Alternatively, my own work employs torsion balances, and the interested reader
can refer to Cavendish’s experiment for most details of such systems. An analysis
of the force sensitivity of a torsion pendulum can be found in [11].

The principle advantage to AFM type or torsion pendulum type measurements
(in fact there is no fundamental difference between them, it’s a matter of scale) is
elimination of stiction associated with the fulcrum type balances used in practically
all earlier experiments. The proliferation of high accuracy mechanical and opto-
mechanical translation stages, together with high quality digital data acquisition
systems has made precision Casimir force measurement possible; the questions of
accuracy are now the central theme, not the simple detection of the force.

This is not to say that the experiments are easy or simple; again, the art of the
experiments lies in the attainment of high force measurement sensitivity, reliable
calibrations, the production of well-characterized optical surfaces, and the elimi-
nation of background effects due to, for example, electrostatic effects. The elec-
trostatic effects are common to all experiments, either in regard to system
calibrations or systematic background effect, or both. Given the importance of
electrostatic effects, I will discuss them at length in this review.

It is often said that the Casimir force is simply the retarded van der Waals
potential. This view strikes me as fundamentally flawed, as the Casimir force does
not depend on the properties of the individual atoms of the plates, but on their bulk
properties. Indeed, the non-additivity of the van der Waals effect has been discussed
at length in the literature (see [12] for a discussion and references). It is more
profitable to think of the Casimir force as the zero point electromagnetic field stress
on a parallel plate waveguide. This force is apparently largest when the waveguide is
constructed from perfectly conducting material(s). The effects of imperfect con-
ductivity can be calculated provided the optical constants of the material(s) are
known over an adequate wavelength range. Furthermore, most of the surface–surface
Casimir effect is due to conduction electrons. It is meaningless to assign a retarded
van der Waals force between the individual electrons in a conductor. Likewise, if
the Casimir force was simply the retarded van der Waals force, it would make little
sense to consider modifying the Casimir force, in a fundamental way, by altering the
mode structure imposed by specially tailored boundaries.

7.2 Motivation for the Experimental Study of the
Casimir Force: Some Recent Results

The Casimir force is of fundamental interest in that it is taken as evidence for the
existence of the fluctuations associated with the quantum vacuum [13]. One can
almost as easily derive the Casimir force by treating the electromagnetic field
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classically, with the field fluctuation due to dissipation in the material bodies; this
is the Lifshitz approach [14]. A principal controversy associated with the quantum
vacuum interpretation lies in the fact that the zero point electromagnetic field
energy, when integrated to the Planck scale (which is the natural cutoff), leads to a
cosmological energy density some 130 orders of magnitude larger than observed.
This is an open problem in modern physics.

There are three principal motivations for studying the Casimir force. One
question is how well do we understand the basic underlying physics? This relates
to the second motivation which lies in the testing for the existence of short range
corrections to gravity, or a new force associated with axion exchange, for example.
For such tests, the Casimir force represents a systematic background effect that
must be characterized or physically eliminated by employing a shield. The third
motivation comes from interest in modifying the Casimir force to eliminate stic-
tion, for example, or make it useful in nanodevices. These categories are not
mutually exclusive, and of course overlap considerably as the questions all have a
fundamental element.

7.2.1 Progress in Understanding the Fundamental
Casimir Force

In 2000, Bostöm and Sernelius [9, 10] put forward the first fundamentally new idea
relating to the surface–surface Casimir effect in over 40 years, since Lifshitz’s
paper [14], which lies in the treatment of material permittivities in the zero-
frequency limit. The problem of finite conductivity was addressed earlier by
Hargreaves and later by Schwinger et al. [3, 4] who proposed a possible means to
deal with it, that is, to let the surface material permittivity diverge before setting
the frequency to zero. The point is that in calculating the Casimir force at finite
temperature, the integral includes a Boltzmann’s factor which accounts for the
thermal population of the electromagnetic modes,

NðxÞ þ 1
2
¼ 1

e�hx=kbT � 1
þ 1

2
¼ 1

2
coth

�hx
2kbT

; ð7:4Þ

where �hx is the energy of a photon, kb is Boltzmann’s constant, and T is the
absolute temperature. Because coth x has simple poles at x ¼ �inp; the integral
over frequency in calculating the Casimir force can be replaced by a sum of the
residues at the poles of (7.4), or Matsubara frequencies,

xn ¼
npkbT

�h
: ð7:5Þ

Analytic continuation of the permittivity function allows the transformation of the
integral from over real frequencies to a contour integral on the complex frequency
plane, and it is valid to replace the integral over frequency with a sum over the
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poles. The upshot is that the transverse electric (TE) mode with n=0 does not
contribute to the force at all if the permittivity diverges slower than x�2 in the
limit as x goes to zero. It is generally assumed that for metals with a finite
conductivity, at zero frequency the permittivity goes as

�ðxÞ ¼ 4pir
cx

; ð7:6Þ

in which case the TE n ¼ 0 mode does not contribute at all to the force. This is
important because at room temperature, at distances greater than about 10 microns,
this mode accounts for roughly half of the force. The implied correction at sep-
arations of 1 micron is about 30%. This appears to be at odds with a number of
experiments, including my own. In particular, I had spent much effort in finding a
correction to my experiment that would bring the results into agreement with my
own incorrect calculation for Au. Thus I was well-equipped to reject this result
outright, as did a number of others.

One possible solution is that the permittivity diverges as x�2 as the frequency
goes to zero. This has led to the proposal of a generalized plasma model [15],

�gpðinÞ ¼ �ðinÞ þ
x2

p

n2 ; ð7:7Þ

where in represents the frequency along the imaginary axis, � is the usual Drude
model permittivity, for example, and xp is the so-called plasma frequency due to
free electrons. Normally this expansion is assumed to be valid at very high fre-
quencies, much above the resonances in the system of atoms and charges that
comprise the plates. However assuming the permittivity of this form brings back
the contribution of the TE n ¼ 0 mode, and apparently improves the agreement
between theory and experiment.

There are consequences in a broader complex of phenomena when this gen-
eralized plasma model is introduced. In particular, if we consider the interaction of
a low-frequency magnetic field with a material surface, by use of Maxwell’s
equation, it is straightforward to show that [16]

�r2H ¼ x2

c
�ðxÞH; ð7:8Þ

which represents so-called eddy current effects, and can be easily extended to the
complex frequency plane. We see immediately that if � diverges as x�2 that at
zero frequency,

�r2H / H; ð7:9Þ

which predicts that a static magnetic field will interact with an ordinary conductor
in a manner different from universal diamagnetism. Such an extra effect is not
experimentally observed, as (7.8) together with (7.6) is known to describe the non-
diamagnetic interaction of low frequency fields with conductors. So we are faced
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with discarding over a century of electrical engineering knowledge in order to
explain a few 1% level Casimir force experiments of questionable accuracy, and
my own. This is not acceptable.

The crux of the problem lies in the fact that at equilibrium, all electric fields at a
surface of a conductor must terminate normal to the surface [17]. An electric field
parallel to a surface implies a flowing current; such currents can exist in a tran-
sitory fashion as associated with a fluctuation as required for generating the
Casimir force, but such fluctuations cannot occur with zero frequency. For the TE
modes, the electric field is parallel to the surface, so at zero frequency TE modes
simply cannot be supported, assuming that equilibrium and zero frequency are
equivalent. We will return to this problem later in this review in relation to
electrostatic calibrations.

This issue is, however, not yet settled as new precise experiments are required. It is
interesting that this effect becomes less pronounced at smaller separations, simply
because the n ¼ 0 modes contribute a relatively smaller fraction to the total force. For
my own experiment [2] the possibility of a systematic error is becoming more and
more apparent. It should be emphasized, however, that AFM type experiments probe
an order of magnitude smaller distance scale than the torsion pendulum experiments,
and the relative contributions of various effects are rapidly varying.

Work with AFMs and MEM type systems have demonstrated the difficulty of
producing metal and other films, together with their characterization, that allows
a comparison between experiment and theory at a level of better than 10%.
For example, Svetovoy et al. [18] show that the prediction of the Casimir force
between metals with a precision better than 10% must be based on the material
optical response measured from visible to mid-infrared range, that the tabulated
data is generally not good enough for precision work better than 10% accuracy.
The issues of roughness are well-discussed in [1], however, additional new work
by van Zwol et al. [19] amplifies the problems of surface roughness particularly in
determining the absolute separation. See also the Chap. 10 of van Zwol et al. in
this volume for additional discussions of roughness in Casimir physics. It appears
that the best prospect for determining the correct form of the permittivity function
at zero frequency is to do a measurement at very large separations. Indeed,
problems of surface roughness correction virtually disappear for typical optical
finishes at distances about 500 nm. Above 2–3 microns, the difference between the
force with and without the TE n ¼ 0 mode approaches a factor of two. Recent
experimental work on Au films at Yale show that the Boström–Sernelius analysis
is likely correct, but this work is at a very preliminary stage.

7.2.2 The Detection of New Long Range Forces

In the mid-1980s, the question of the possible existence of a new so-called fifth
force was suggested based on data from Eötvos-type experiments [20]. Presently,
interest in such forces is greater than ever due to possible modification of gravity
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as allowed by String Theory, and due to the observation of dark energy in the
Universe which might be due to particles associated with new long range forces
that could manifest themselves on many different length scales [21]. The basic idea
is that our four dimensional Universe is embedded in a space of more than 10
dimensions. Leakage of lines of force between the larger space and our four
dimensional world could lead to a modification of the inverse square law, for
example. Although there is no specific prediction from a String theory, the pos-
sibility does exist in its context.

With the publication of my 1997 experimental result, I received many sug-
gestions to analyze my experiment in light of an additional force that would appear
along with the Casimir force, however I rejected these suggestions because my
experiment was intended as a demonstration and any limit would be at the level of
100% of the Casimir force. Taken as a fraction of the gravitational field, my result
was not particularly spectacular. Nonetheless, others analyzed my experiment.
Among the first to do so, in the context of a general review of limits on sub-
centimeter forces, was Long et al. [22] and earlier, with a more detailed analysis,
was Klimchitskaya et al. [23].

The most ambitious recent work on this subject is by Decca et al. [24] who
achieved an astounding accuracy without observing any anomalous effects. Use of
the proximity force theorem, to be discussed later in this review, to calculate the
limits on a possible new force has been criticized. The issue is that the proximity
force theorem really only applies to a force that depends on the location of the
body surfaces; the approximation is not valid for the volume integral required for
calculating the anomalous force. The applicability is addressed by Dalvit and
Onofrio [25] where corrections to the calculation in [26] are pointed out.

Earlier work by Decca et al. [27] appears as more reliable at constraining new
forces. The technique developed here, a so-called isoelectronic method, relied on the
properties of an Au film being independent of the substrate. For different materials
coated with Au films of identical optical characteristics and of sufficient thickness,
the Casimir force should be the same. In this work Au/Au and Au/Ge composites are
compared, and the result is ‘‘Casimir-less.’’ Techniques such as this appear as the
most likely way to achieve the best sensitivity to new forces, however, unfortunately
the minimum separation is limited by the Au film thickness, hence the later work
[24]. See also Chap. 9 by Decca et al. in this volume. It should be noted that use of a
screening film to eliminate electrostatic forces and other background effects have
been used in other ‘‘fifth force’’ experiments for separations at the mm scale, but
clearly the trick can be scaled down to distances limited only by the skill of the
experimenter (Luther, G.: Private Communication (1997)).

7.2.3 Modification of the Casimir Force

The possibility of modification of the Casimir force is a topic of current great
interest. With the rising of nanotechnology, the need to control, modify, or make
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good use of the Casimir force is imperative as it is among the dominant forces
affecting MEMs and NEMs. At very short distances, at the atomic scale, the large-
scale geometrical aspects of the surfaces become irrelevant, and the force becomes
dominated by the van der Waals force between atoms comprising the plates; the
atom-atom force along with roughness leads to stiction and friction. At such short
distances, the treatment of the plates in a continuum fashion fails. Any possibility
to control either the short range or long range force can have enormous techno-
logical benefits. These issues have generated renewed interest in measuring the
Casimir force with improved precision, in applying it to nano-mechanical devices,
and in controlling it. In many instances, the attractive nature of the force leads to
more problems than to solutions because, for example, it leads to irreversible
sticking of the components in a nano-device. There have been proposals to develop
‘‘metamaterials’’ which provide a boundary condition that makes the force
repulsive, but the extremely large frequency range of electromagnetic field modes
that contribute to the force suggests that this is not possible [28].

The internal sticking problem of MEMs, however, might be slightly overstated.
Recent commentary relating to this possible problem has been based on the work
of Buks and Roukes [29] where irreversible stiction was observed in MEMs
devices. In this work, the mechanical motion was monitored by use of an electron
beam which caused the components of the MEMs to become highly charged.
Whether the irreversibility is really due to the Casimir force, or if it is due to
charge surface interactions, remains an open question. Nonetheless, it is agreed
that a full understanding of the Casimir force, and its possible control, are central
to the future of MEMs and NEMs engineering. See also Chap. 8 of Capasso et al.
and Chap. 9 of Decca et al. in this volume for discussions of the use of MEMS and
NEMS in Casimir force measurements.

The prospects of engineering a coating that can significantly modify the
Casimir force appear as dismal. This is because the Casimir force is a ‘‘broad-
band’’ phenomenon. Use of magnetic films has been suggested, but unfortunately
ferromagnetic response does not extended into the near-infrared and visible
spectrum that would be required to modify the Casimir force.

Recently, it has been demonstrated experimentally that a conductive oxide film,
Indium–Tin Oxide (ITO) produces a Casimir force about half of that due to metals
[30]. ITO has a number of interesting features, including transparency over the
optical spectrum and chemical inertness. Thus it appears as an interesting material
from a nanoengineering viewpoint.

Casimir himself attempted to apply his namesake force to the electron, spe-
cifically to calculate the fine structure constant. Casimir modelled the electron as a
conducting ball of uniform charge that would contract due to the zero point energy
of the external electromagnetic modes. This force would be balanced by the space
charge repulsion of the uniform charge density, when the conducting sphere of
constant total charge was just the right diameter. The fine structure constant a �
1=137; which relates to the electron diameter, could then be determined from
fundamental parameters along with a calculation of how the electromagnetic
mode zero point energy changes as the sphere contracts [12]. However, Boyer
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subsequently found that the exterior spherical modes cause the sphere to expand
[31]. Boyer’s result was interesting enough that it led to the exploration of the
effects of geometry on the Casimir force.

The change in boundary conditions that had been considered cannot be realized
experimentally; for example, if one cuts a conducting sphere in half and tries to
measure the force between the hemispheres, the force is different from the stress
outside the continuous conducting sphere—simply because the two halves are now
separated by a vacuum gap and there will be an attraction there, and because the
structure of the surface modes is altered by the gap. Nonetheless, several exper-
iments aimed at directly modifying the Casimir force have been performed in the
last decade or so, and are continuing.

7.2.4 Hydrogen Switchable Mirror

An experiment with a surprising result employed a hydrogen switchable mirror,
and a change in the Casimir force was sought when the mirror was switched
between its low reflectivity and high reflectivity states [32]. The surprise was that
no significant change in the Casimir force was observed with the switching,
despite the rather dramatic change in the mirror from nearly transparent to highly
reflecting.

The explanation of the null result likely lies in the construction of the mirror
which has a very thin (5 nm) palladium layer to protect the underlying sensitive
structure. This layer tends to dominate the Casimir effect, even though the layer is
about one-half of a skin depth for the frequencies that are affect by the hydrogen
switching. Other complications include the narrow spectral width of the mirror
state which reduces the effect further, and the layered structure of the mirror—it is
possible that the principal activity occurs in the deeper layers. In spite of these
problems, hope remains that an effect on the Casimir force will be detectable [33].

7.2.5 Geometrical Boundary Effects

Until now, no significant or non-trivial corrections to the Casimir force due to
boundary modifications have been observed experimentally. As mentioned above,
for the systems that had previously been considered such as the conducting sphere,
it is not clear that an experimental measurement of the external stress is even
possible. Cutting a sphere in half clearly changes the boundary value problem; it is
unlikely that the two halves of such a sliced sphere will be repelled with a force
that is given by the external stress on the sphere.

However, there are other possible ways to generate a geometrical influence on
the Casimir force. A conceptually straightforward way is to contour the surfaces of
the plates at a length scale comparable to the mode wavelengths that contribute
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most to the net Casimir force. For a plate separation d, the wavelengths that
contribute most are �pd: This means that a surface nano-patterned at 400 nm
length scale should show significant geometrical effects for separations below
1 lm: Using such a system, Chan et al. have produced a convincing measurement
of a non-trivial geometrical influence on the Casimir force [34].

These measurements, between a nanostructured silicon surface and a Au coated
sphere, were made using a micromechanical torsional oscillator. The change in
resonant frequency of the oscillator, as a function of separation between the Au
sphere and the surface, provided a measure of the gradient of the Casimir force. The
sphere, of radius 50 lm coated with 400 nm of gold, was attached to one side of the
oscillator that comprised a 3.5 lm thick, 500 lm square silicon plate suspended by
two tiny torsion rods. The sphere and oscillator were moved toward the nanostruc-
tured surface by use of a piezoelectric actuator (see Fig. 7.1 of this chapter, and also
Fig. 8.5 of the chapter of Capasso et al. for a sketch scheme of this experiment).

Two different nanostructured plates, compared with a smooth plate, were
measured in this work. The geometry of the nanostructures, rectangular trenches
etched in the surface of highly p-doped silicon, was chosen because the effects are
expected to be large in such a geometry. Emig and Büscher had previously cal-
culated the effective modification of the Casimir force due to such a geometry, but
for the case of perfect conductors [35]. Even though the calculations were not for
real materials, these theoretical results appeared as a reasonable starting point for a
comparison with an experiment.

Although much progress has recently been made toward a realistic and
believable accuracy and precision with which the Casimir force can be calculated
for real materials [18], the problems associated with the well-known experimental

50 µm dia.
glass sphere

0.5 µm
Au coating

Connection to torsional oscillator

      Micropatterned trench array
   (shown: 0.5 by 1.0 µm to scale)

x10

Fig. 7.1 An approximately
scaled schematic
representation of the
experiment of Chan et al. The
trench arrays, of varying
width and depth, were made
from the same doped p-type
Si substrate. (Public Domain,
by S. K. Lamoreaux)
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variability of sputtered or evaporated films were avoided in the work of Chan et al.
by comparing two different nanostructured plates with a smooth plate, all made
from the same silicon substrate, and all using the same Au coated sphere. The trick
is comparable to the isoelectronic method described in Sect. 7.2.2. So even though
ab initio calculations of the Casimir force for real material using tabulated optical
properties cannot be accurate to better than 10%, this problem was simply cir-
cumvented by the comparison technique.

The geometric modification of the Casimir force was detected by measuring a
deviation from that expected by use of the Proximity Force Approximation (PFA),
or the Pairwise Additive Approximation (PAA), both of which will be described
later in this review. The success of the PFA is so good that it suggests a means of
detecting a geometrical effect. Basically, the surface is divided into infinitesimal
units, and it is assumed that the total Casimir force can be determined by adding
the Casmir force, appropriately scaled by area, between surface unit pairs in
opposite surfaces; this is the PAA. Thus, for the nanostructured surfaces, a 50%
reduction in force would be expected by the PAA, because the very deep trenches
(depth t ¼ 2a � 1 lm), etched as a regular array, were designed to remove half of
the surface. As mentioned, two different trench spacings k were fabricated and
measured, such that k=a ¼ 1:87 (sample A) and 0.82 (sample B), and compared to
a smooth surface. The Casimir force between the gold sphere and the smooth plate,
as calculated from the tabulated properties of gold and silicon, taking into account
the conductivity due to the doping, agree with the experimental results to about
10% accuracy. For sample A, the force is 10% larger than expected by the PAA,
using the measured smooth surface force, and for sample B, it is 20% larger, in the
range 150\z\250 nm. The deviation increases as k=a decreases, as expected.

The theory of Emig and Büscher predicts deviations from the PAA twice as
large as were observed. Nonetheless, the results of Chan et al. indicate a clear
effect of geometry on the Casimir force. However, much theoretical work remains
to be done toward gaining a complete understanding of the experimental obser-
vations. The already difficult calculations are made more so by the finite con-
ductivity effects of the plates, and the sharp features of the trenches as opposed to
the smooth simple sinusoidal corrugations. New calculational techniques have
been developed that will allow reasonable accuracy calculations. See Chap. 4 of
Lambrecht et al. in this volume for related discussions. Also a number
of possible systematics associated with electrostatic effects were not fully
investigated.

7.2.6 Repulsive Casimir Effect

The generalized Liftshitz formulation of the Casimir force allows for a material
between the plates. The force is thus altered from the case of a vacuum between
the plates, and the effect can be calculated. It is easy to envision filling the space
between the sphere and plate of a Casimir setup with a liquid and measuring the
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effects of replacing the vacuum. A first experiment using alcohol between
the plates was done by Munday et al. [36] where a substantial reduction in the
force was observed compared to what is expected with vacuum between the plates.
The effects of Debye screening and other electrostatic effects were also thoroughly
studied [37].

Munday et al. extended their studies to a very interesting situation where
the Casimir force becomes repulsive, by suitably choosing the permittivities of
the plates and liquids. If the plates’ material dielectric permittivities are �1 and �2;
and the liquid between has �3; the force will be repulsive when �1 [ �3 [ �2:
Of course, the permittivities are frequency dependent, so this relationship must
hold over a sufficiently broad range of frequencies.

Perhaps a more familiar problem is the wetting of a material surface by a liquid.
In this case, one plate is replaced by air or vacuum so �2 ¼ 1; and if the liquid
permittivity is less than that of the remaining plate, the liquid spreads out in a thin
film rather than forming droplets. For example, liquid helium, which has a very
small permittivity, readily forms a thin film because it is ‘‘repelled’’ by the vacuum
ð�1 [ �3 [ �2 ¼ 1Þ; and we say that the liquid wets the surface. On the other
hand, liquid mercury which has a high effective permittivity does not wet glass
ð�1\�3 [ �2 ¼ 1Þ:

Although there are many liquids that wet glass or fused silica, there are only a
few sets of materials that will satisfy the requirement for a repulsive force between
material plates. The set employed by Munday et al. was fused silica and gold, with
bromobenzene as the liquid. The experimental setup was based on an atomic force
microscope (AFM) that was modified slightly for the detection of average surface
forces rather than atomic-scale point forces. For measuring the Casimir force, the
sharp tip was replaced by a gold coated microsphere (diameter = 39.8 microns)
which serves as the gold plate. Using a spherical surface for one plate simplifies
the system geometry, which is completely defined by the sphere radius and dis-
tance of closest approach from the flat fused silica plate.

A problem that all Casimir force experiments face is the system force calibration.
For this work and related work, a most clever calibration technique was devised.
Because the fluid produces a hydrodynamic force when the sphere/plate separation is
changed, and this force is linear with velocity, subtracting the force when the sep-
aration is changed at two different speeds produces the hydrodynamic force without
any contribution from the Casimir force. The hydrodynamic force thus measured,
which can be calculated to high accuracy, provided the calibration. In addition, this
force, scaled to the appropriate velocity, was then subtracted from the force vs.
distance measurement, yielding a clean measurement of the Casimir force. The
measurements spanned a range of 20 nm to several hundred nm, with the minimum
distance limited by surface roughness, and the maximum distance limited by system
sensitivity. Various spurious effects were accounted for and shown to have no sig-
nificant contribution within the statistical accuracy of the measurement.

Showing that it is indeed possible to produce and measure a repulsive Casimir
force is important to both fundamental physics and to nanodevice engineering.
There has been much discussion of such forces as they will provide a means of
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quantum levitation of one material above another. Even in a fluid, it will be
possible to suppress mechanical stiction and make ultra-low friction sensors and
devices. It might be possible to ‘‘tune’’ the liquid (e.g., by use of a mixture) so that
at sufficiently large distances, the force becomes attractive, while being repulsive
at short distances. This would allow objects to levitate above a liquid covered
surface, for example. See Chap. 8 of Capasso et al. in this volume for related
discussions.

7.3 Approximations, Electrostatic Calibrations,
and Background Effects

Wittingly or unwittingly, many approximations have been included in all Casimir
force experiments to date. For example, most experiments employ the use of an
electrostatic force from accurately measured applied voltage for calibrations and
the detection of spurious contact potentials between the plates. The force is
assumed to follow the form

FðdÞ ¼ 1
2

oCðdÞ
od

V2; ð7:10Þ

where C(d) is the capacitance between the Casimir plates, as a function of distance
d between them. An exact calculation exists between a sphere and a plane,
however, for most situations the so-called Proximity Force Approximation (PFA)
can be used. In the case of a plate with spherical surface with curvature R, with a
distance d at the point of closest approach to a plane surface, the force between the
two plates is

FðdÞ ¼ 2pREðdÞ; ð7:11Þ

where EðdÞ is the energy per unit area between plane parallel surfaces that leads to
the attractive force.

Briefly, the PFA was introduced by Deryagiun [39] to describe the Casimir force
between curved surfaces, and this approximation is known to be extremely accurate
when the curvature is much less than the separation between the surfaces. The PFA
can be used beyond the Casimir force and has quite general applicability [40, 41]. The
PFA is a special case of the Pairwise Additive Approximation (PAA) where the plate
surfaces are divided into infinitesimal area elements, and the force is determined
through a pairwise addition of corresponding elements. The PFA and PAA work very
well for electrostatic effects because, for a conductor (even poor) in equilibrium, the
electric lines of force must be normal to the surface, otherwise currents would flow in
contradiction to the assumption that the system is in equilibrium.

The use of a sphere and a flat plate vastly simplifies an experiment because the
system is fully mechanically defined in terms of the point of closest approach and
the radius of curvature of the sphere. For two flat plates the system is specified by
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two tilt angles, the areas, long-scale smoothness, and a separation, which all need
to be defined, measured, and controlled. It is interesting to note that if the force is
measured as a function of applied voltage in the sphere-plane configuration that
the result should be

FðdÞ ¼ p�0R

d
V2 ¼ aV2; ð7:12Þ

where �0 is the permittivity of free space, and R is the radius of curvature of the
spherical surface. The absolute distance between the sphere and the plane surface
is proportional to a�1 and this provides a means of determining the distance.

Even when the full form of the sphere-plane capacitance is used in (7.10),
approximations still exist. Specifically, there are additional terms to the force
given by (7.10) because the capacitance is in fact a tensor. This can be easily
seen, as when a charged sphere is bisected, the two halves repel each other,
with a force

F ¼ q2

8R
;

where q is the charge on the sphere [17] (Prob. 2, Sect. 5). Note that this is the force for
a fixed charge, which must be modified for a fixed voltage. The point is that the two
halves experience a force, even though their potential difference is zero; there are
apparently additional terms that need to be added to (7.10). As the geometry is not
critical in this argument, we can conclude that if the two plates of a Casimir exper-
iment are at the same non-zero potential, there will be an additional repulsive force
between them. This sort of effect has not been considered at all.

The other problem that has received significant attention only recently is the
effect of patch potentials on a conducting surface. The effect is well-known, and is
largest with clean samples because when dirt is present, ions tend to accumulate at
the boundaries between the patches, shielding the effect [17] (Sect. 23).

To date, every Casimir experiment that has bothered measuring the contact
potential as a function of distance has shown an apparent distance dependence of
that potential. Various experiments are nicely reviewed in [42]. The basic essential
problem manifests itself in anomalous behavior in the electrostatic calibration of
an experiment, for example, as experienced in [43]. It was suggested that the
anomalous effects that were observed are due to irregularities of the spherical
surface. Roughness effects [44] certainly can cause problems at short distances, but
the possibility that the anomalous effects are due to simple geometrical effects is
credibly discarded in [42].

The contact potential is simply measured by finding a voltage potential dif-
ference Vm between the two plates that minimizes the force given by (7.10). Vm is
manifest as an asymmetry in the force between �V applied between the plates.

In Figs. 7.2 and 7.3 we show a picture of our experiment [45] with Germanium
(Ge) plates and a general scheme of the control system of the torsion pendulum
apparatus. We were initially confused because a 1=d1:2 to 1=d1:5 force persisted
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when the electrostatic force was minimized at each distance. Our initial conclusion
was that there was a distance offset, as described in the next section, together with
an uncompensated voltage offset. de Man et al. [46] have also observed a distance
dependence of the contact potential, and concluded that it did not lead to any
anomalies in their electrostatic calibrations, however, the measurements are at
shorter distances than were used in the Ge experiment. In general, the relative
electrostatic effect, compared to the Casimir force, should scale roughly as
ð1=dÞ=ð1=d3Þ ¼ d2: I will now tell the story of how we came to understand the
results of our measurements using Ge plates.

7.3.1 Inclusion of the Debye Screening Length?

In the early calibrations of our Ge plate Casimir experiment [45], we had a long-
range background force that depended on distance not quite as 1/d, as described
above. Our initial guess was that there was a distance offset in our calibrations due

Fig. 7.2 A photograph of the
apparatus, in operation, used
to measure the attractive
force between Ge plates. The
glass bell jar introduces some
distortion; visible are the
‘‘compensating plates’’ on the
left of the torsion pendulum,
and the plates (2.54 cm
diameter) between which the
Casimir force is measured, on
the right. A ThorLab
T25XYZ translation stage is
used to position the ‘‘fixed’’
plate. The fine tungsten
torsion wire is not visible.
(Public Domain, by S.K.
Lamoreaux)

    XYZ 
Positioner

Pivot/Suspension Point 
  (pendulum grounded 
  through torsion wire)

Piezoelectric Transducer
    with Strain Gauge

  Capacitance Bridge
and PID DC Feedback
           Network

Computer
  Control

   DC BiasVoltage
(from Computer DAC)

  Force (Voltage)
to Computer ADC

Fig. 7.3 A schematic
drawing of the control system
of the torsion pendulum
apparatus. (Public Domain,
by S.K. Lamoreaux)
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to penetration into the plates of the calibration electric field. The problem is that
a quasi-static electric field can propagate a finite distance into a semiconductor
(see, e.g., [47]); this distance is determined by the combined consideration of
diffusion and field driven electric currents, leading to an effective field penetration
length (Debye–Hückel length)

k ¼
ffiffiffiffiffiffiffiffiffiffiffi
��0kT

e2ct

r
; ð7:13Þ

where ct ¼ ch þ ce is the total carrier concentration, which for an intrinsic semi-
conductor, ce ¼ ch:For intrinsic Ge k � 0:6 lm;while for a good conductor, it is less
than 1 nm. k is independent of the applied field so long as the applied field E times k is
less than the thermal energy, kbT where kb is Boltzmann’s constant. In this limit, and
at sufficiently low frequencies and wavenumbers, thermal diffusion dominates the
field penetration into the material. A sufficiently low frequency for Ge would be
vc=k� 10 GHz; where vc is a typical thermal velocity of a carrier.

The potential in a plane semiconductor, if the potential is defined on a surface
x ¼ 0 is

VðxÞ ¼ Vð0Þe�jxj=k; ð7:14Þ

where k is the Debye–Hückel screening length, defined previously.
We are interested in finding the electrostatic energy between two thick Ge

plates separated by a distance d, with voltages þV=2 and �V=2 applied to the
back surfaces of the plates. In this case, the field is normal to the surface. After we
find the energy per unit area, we can use the proximity force approximation to get
the attractive force between a spherical and flat plate.

Let x ¼ 0 refer to the surface of the plate 1, and x ¼ d refer to the surface of
plate 2. By symmetry, the potential at the center position between the plates is
zero. The potential in plate 1 can be written as

V1ðxÞ ¼ V=2� ðV=2� VsÞe�jxj=k; ð7:15Þ

and for the space between the plates

V0ðxÞ ¼ �2Vsx=d þ Vs;

where we assume the field is uniform. Vs; the surface potential, is to be
determined.

We need only consider the boundary conditions in plate 1, which are

V1ð�1Þ ¼ V=2;

V0ð0Þ ¼ V1ð0Þ;

(which has already been used)

�
dV1ðxÞ

dx
jx¼0 ¼

dV0ðxÞ
dx

jx¼0;
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where the last two imply that D ¼ �E is continuous across the boundary.
The solution is

Vs ¼
V

2
1

1þ 2k=�d

� �
: ð7:16Þ

With this result, it is straightforward to calculate the total field energy per unit area
in both plates and in the space between the plates. The result is

E ¼ 1
2
�0V2

d

yþ y2

ðyþ 2Þ2

" #
; ð7:17Þ

where the dimensionless length y ¼ �d=k has been introduced. By expanding this
result for small y, it can be easily seen that the effect appears as an apparent offset
in the distance that is determined by measuring the capacitance between the plates.
For small voltages, this offset is approximately k=� ¼ 0:68=16 � 0:05 lm:

If V � Vs is large compared to kbT; the effective penetration depth increases
because the charge density is modified in the vicinity of the surface. The potential
in the plates is no longer a simple exponential, however one can define an effective
shielding length [47]

k0

k
¼ j/jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e/ þ e�/ � 2
p ; ð7:18Þ

where

/ ¼ V � Vs

kbT
: ð7:19Þ

Given that kbT ¼ 30 meV, at plate separations of order 1 lm for Ge this begins to
be a large correction when voltages larger than 60 mV are applied between the
plates, however, the potentials used in our experiment were far smaller.

We eventually realized that this effect is not present at very low frequencies; the
lifetime of Ge surface states is on the order of milliseconds. The lack of pene-
tration of quasi-static fields into semiconductors was first observed in the devel-
opment of the field effect transistor, and explained by Bardeen [48] as shielding
due to surface states. Again, in equilibrium, the electric field must enter normal to
the plate surfaces, otherwise a current would be flowing in contradiction to the
assumption of equilibrium. Therefore, even on very poor conductors, charges
rearrange to force any applied field to be perpendicular to the surface; when this
situation is attained, the electric field terminates at the surface. The boundary
condition is that of a perfect conductor.

The presence of time-dependent surface states might be responsible for some
of the anomalous electrostatic calibration effects observed by Kim et al. [43].
Particulary if there is a slight oxide coating on a metal surface, the surface states
might not have enough time to reach equilibrium in the dynamic measurement
system that was employed. The relaxation times for trapped surface states can be
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many milliseconds. However, the possibility that these sorts of states contribute to
the anomalous effect is very speculative, and it is difficult to come up with an
experiment to check this hypothesis.

As an aside, our consideration of this effect led us to the realization that the
usual permittivity treatment of materials with non-degenerate conduction electrons
is not correct, but must be solved in a different way than simply assigning a
conductivity to the material [49, 50]. The discussion of this theoretical point is
beyond the scope of this review.

7.3.2 Variable Contact Potential

It was recognized that a distance dependence of the minimizing potential would
lead to extra electrostatic forces that are not necessarily zero at the minimizing
potential [51]. The force at the voltage which minimizes the force at each sepa-
ration was thought to represent the pure ‘‘Casimir’’ force between the plates.
However, the applied voltage VaðdÞ required to minimize the (electrostatic) force
is observed to depend on d, and is of the form (in the 1–50 lm range)

VaðdÞ ¼ a log d þ b; ð7:20Þ

where a and b are constants with magnitude of a few mV. This variation leads to a
long-range 1/d -like potential for the minimized force. An analysis suggests that
this force is better described as 1=dm where m � 1:2�1:4:

As we show here, the variation in VaðdÞ implies an additional force that
increases as 1=d1:25; assuming that the voltage variation is due to the potential of
the plates actually changing with distance. Such changes could come about due to
external fixed fields or potential variations associated with the plate translation
mechanism, and is equivalent to having an adjustable battery in series with the
plates. We were unable to come up with a model that can give a sufficiently large
effect based on interactions between, for example, the charge carriers in the plates.
However, at sufficient sensitivity, it is likely that such effects will be important.

This analysis, while it predicts the correct form of the extra force, predicts that
this force is negative or repulsive. However, it is enlightening to go through the
analysis, and this work will never be published elsewhere. An understanding of the
specific origin of the variation of applied minimizing potential VaðdÞ is not nec-
essary to correct for the additional force that it causes, we simply need the
experimentally determined VaðdÞ; and assume it is tied to the plate positions.

We note further that VaðdÞ is not a measure of the contact potential, but the
voltage which minimizes the force. We call the ‘‘true’’ contact potential VcðdÞ;
which might depend on distance.

In performing our experiment, at each separation d; Va is varied and its value
that minimizes the attractive force is determined. That is, we assume the force is
proportional to the derivative of the capacitance between the plate, times the
square of the potential difference between them. However, this assumption is not
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necessarily correct, as we observe that the force minimizing potential varies with
distance, with value VaðdÞ: In order to assess the implied effects of VaðdÞ; let us
first consider the energy as a function of position, assuming that the two plates are
equipotential surfaces (not necessarily true), let us determine a relationship
between VaðdÞ and VcðdÞ (which is unknown). In order to do this, we assume that
Va is an independent variable:

EðdÞ ¼ 1
2

CðdÞðVa þ VcðdÞÞ2; ð7:21Þ

where C(d) is the capacitance between the plates, Va is the applied potential which
can be varied, and VcðdÞ is the contact potential between the plates (fixed and
unknown), assuming equipotential surfaces.

The force between the plates is given by the derivative of E;

FðdÞ ¼ oEðdÞ
od
¼ 1

2
oCðdÞ

od
ðVa þ VcðdÞÞ2 þ CðdÞðVa þ VcðdÞÞ

oVcðdÞ
od

: ð7:22Þ

Now the minimum in the force is determined by the derivative with Va:

oFðdÞ
oVa

¼ oCðdÞ
od
ðVa þ VcðdÞÞ þ CðdÞ oVcðdÞ

od
¼ 0; ð7:23Þ

which determines VaðdÞ; no longer an independent variable. Thus,

oVcðdÞ
od

¼ � 1
CðdÞ

oCðdÞ
od
ðVaðdÞ þ VcðdÞÞ; ð7:24Þ

which allows the determination of VcðdÞ when VaðdÞ is known. The differential
equation can be solved numerically, noting that at long distances VaðdÞ ¼ �VcðdÞ;
and that VcðdÞ becomes constant.

The electrostatic force between the plates at the minimized potential is given by

FðdÞ ¼ � 1
2

o

od
CðdÞðVaðdÞ þ VcðdÞÞ2
h i

: ð7:25Þ

There are some nice features to this result. First, if we apply a constant offset V0 to
VcðdÞ; this effect is compensated by VaðdÞ � V0 which is easily seen as the rela-
tionship is linear.

Unfortunately, the sign of the effect indicates that it is repulsive, and thus is not
the explanation of the long range attractive force that persists at the minimizing
potential, after correcting for 1/d force, as observed in our Ge experiment. That is,
the variation in contact potential, parameterized as VcðdÞ is not due to a long-range
effect between the plates, affecting for example the surface charge densities.

Clearly, however, a position variation in Va will lead to extra terms in the force.
It should be emphasized that any precision measurement of the Casimir force
requires verification that the contact potential is not changing as a function of
distance, and if it is, some correction to the force as described here might very well
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exist. In the next subsection, we will explore another model that produces a
variation in Va; and describes well the results obtained with our Ge measurements.

7.3.3 Patch Potential Effects

It is often assumed that the surface of a conductor is an equipotential. While this
would be true for a perfectly clean surface of a homogeneous conductor cut along
one of its crystalline planes, it is not the case for any real surface which can be
polycrystalline, stressed, or chemically contaminated. Experiments show that even
with precautions for extreme cleanliness, typical surface potential variations are on
the order of at least a few millivolts [52]. This is most likely due to local variations
in surface crystalline structure, giving rise to varying work functions and hence
varying-potential patches. It is well known that the work function of a metal
surface depends on the crystallographic plane along which it lies; as an example,
for gold the work functions are 5.47, 5.37, and 5.31 eV for surfaces in the
h100i; h110i; and h111i directions respectively. This variation is most likely due
to different effective electron masses, hence Fermi energies, for the different axes.

The means by which surface potential patches form is described in [17], Sect.
22. Briefly, when two conductors, A and B, of different work functions are brought
into contact, electrons flow until the chemical potential (i.e., the Fermi energy) in
both conductors equalizes. If we consider moving an electron in a closed path that
moves from inside conductor A, across the boundary to inside conductor B,
through the surface of B into the vacuum, back through surface A, and to the
starting point, the total work must be zero in equilibrium. If we take the contact
potential difference between the conductors as /ab; and the surface work functions
as Wa and Wb; for the total work to be zero we must have

/ab ¼ Wb �Wa;

implying that the contact potential is simply the difference in the surface work
functions.

It is straightforward to calculate the electric field energy of random patches, as
has been done by Speake and Trenkel [53]. Consider two plane and parallel
surfaces separated by a distance d. Assume a potential V ¼ 0 at x ¼ 0; while at
x ¼ d; V ¼ V0 cos ky: It is easy to show that, in the region between the plates,

Vðx; yÞ ¼ V0 cos ky
ekx � e�kx

ekd � e�kd
:

The field energy, per unit area is given by

E ¼
Zd

0

oV

ox

� �2

þ oV

oy

� �2
" #

dx;
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where we have used the fact that hcos2 kyi ¼ hsin2 kyi ¼ 1=2 to do the y integral.
Letting

u ¼ ekx � e�kx dv ¼ ekx � e�kx;

so

du ¼ k½ekx þ e�kx� v ¼ 1
k
½ekx þ e�kx�;

and integrating by parts

Zd

0

½ekx � e�kx�2dx ¼ 1
k
½e2kx � e�2kx�jd0 �

Zd

0

½ekx þ e�kx�2dx:

The LHS is proportional to the field energy for Ey while the last term on the RHS
is proportional to (minus) the field energy for Ey: We thus have

E ¼ k
V2

0

2
e2kd � e�2kd

½ekd � e�kd�2
:

By use of the proximity force approximation, the (attractive) force between a flat
surface and spherical surface is FðdÞ ¼ 2pREðdÞ where R is the radius of curva-
ture, where d is the point of closest approach between the surfaces. In the limit
kd ! 0;

F ¼ 2pR
V2

0

4d
/ 1

d
:

This shows that when kd � 1 or d � k=2p where k is a characteristic length of a
potential patch, the force goes as 1/d. This is what we expect from the PAA when
the surfaces are very close.

There is an intermediate range where the force transforms from 1/d to expo-
nential variation; at further distances, the force becomes a constant, as E does not
vary with d. Between parallel plates, at long distances, the force is zero because
the field energy does not change with separation. It is interesting to note this
significant difference between the PFA result for a spherical surface and the result
for parallel plates. As a constant force is in reality unobservable, this long distance
force should be subtracted from the PFA result.

It should be noted that the field equations are linear, so we can add other
cosðk0yÞ; cosðk0zÞ fluctuations, and the integral over z, y leads to delta functions of
k � k0: We can therefore rewrite the attractive force as an integral over ky; kz where
we have VkyðyÞ þ VkzðzÞ representing the amplitude spectrum in k space of the
surface fluctuations. If we take VkyðyÞ�VkzðzÞ and assume they are uncorrelated,
the integral over ky; kz leads to
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F ¼ pRV2
rms

Z1

0

ð2pk dkÞðkSðkÞÞ e2kd � e�2kd

½ekd � e�kd�2
;

where, by use of the Wiener-Khinchine theorem, S(k) is the normalized cosine
Fourier transform (in polar coordinates) of the surface potential spatial correlation
function.

In order to compute the patch effect on the force in the sphere-plane configu-
ration we make use of the proximity force approximation. Just as in the case of
roughness in Casimir physics [44], one must distinguish between two PFAs: one is
for the treatment of the curvature of the sphere (valid when d � R; where R is the
radius of curvature), and the other one is the PFA applied to the surface patch
distribution (valid when kd � 1). We assume that we are in the conditions for PFA
for the curvature, but we keep kd arbitrary. Then, the electrostatic force in the
sphere-plane case is FspðdÞ ¼ 2pREðdÞ; implying

Fsp ¼ 2p�0R

Z1

0

dk
k2e�kd

sinhðkdÞSðkÞ: ð7:26Þ

There are a number of models that can be used to describe the surface fluctuations.
The simplest is to say that the potential autocorrelation function is, for a distance
r along a plate surface,

RðrÞ ¼ V2
0 for r� k;

0 forr [ k:

�
ð7:27Þ

Then, by the Wiener-Khinchin theorem, the power spectral density S(k) can be
evaluated as the cosine two-dimensional Fourier transform of the autocorrelation
function, which in our notation is [54]

SðkÞ ¼ V2
0k2 J1ðkkÞ

kk
; ð7:28Þ

with J1 the Bessel function of first kind. The plane-sphere force is then given by,
using k ¼ u=k;

Fsp ¼ 2p�0R

Z1

0

du u
J1ðuÞ

e2ud=k � 1
: ð7:29Þ

A numerical calculation shows that, for d\:01k;

Fsp �
p�0RV2

0

d
; ð7:30Þ

suggesting that V2
rms ¼ V2

0 ; as expected. For 50k[ d [ k; the force falls with
distance as 1=d3:
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We see immediately that at short distances, there is a residual force due to
patches that varies as 1/d, and there is no minimizing potential that can com-
pensate this effect. It is, in a restricted sense, equivalent to having an oscillating
potential between the plates; there is no way for a static field to compensate the
oscillating field energy.

As described in the last section, in our own work [45] and in a number of other
experiments [43, 46], a distance-variation in the electrical potential minimizing the
force between the plates has been observed. It had been suggested already that this
variation in contact potential can cause an additional electrostatic force, and an
estimate was made for the possible size of the effect [51]. However, further
experimental work shows that the model used in [51], where the varying contact
potential is considered to be a varying voltage in series with the plates, does not
reproduce our experimental results [55, 56].

A model that produces a residual electrostatic force consistent with our
observations [45] is shown in Fig. 7.3. In this figure, the two capacitors (short
distance, CaðdÞ; long distance Cbðd þ DÞ) create a net force on the lower con-
tinuous plate (setting V1 ¼ 0 initially),

Fðd;V0Þ ¼ �
1
2

C0aV2
0 �

1
2

C0bðV0 þ VcÞ2; ð7:31Þ

where

C0a ¼
oCaðdÞ

od
; C0b ¼

oCbðd þ DÞ
od

; ð7:32Þ

and V0 can be varied, with Vc a fixed property of the plates. The force is minimized
when

oFðd;V0Þ
oV0

����
V0¼Vm

¼ 0) VmðdÞ ¼ �
C0bVc

C0a þ C0b
; ð7:33Þ

implying a residual electrostatic force

Fel
resðdÞ ¼ Fðd;V0 ¼ VmðdÞÞ

¼ � C0a þ
Ca
02

C0b

� �
V2

mðdÞ
2
¼ � C0aC0b

C0a þ C0b

� �
V2

c

2
:

ð7:34Þ

It is easy to take a case of parallel plate capacitors (C0a ¼ ��0A=d2 and C0b ¼
��0A=ðd þ DÞ2; where A is the area of each of the upper plates in Fig. 7.3,
assumed to be equal; hence, the lower continuous plate has area 2A) and to show
that there is a residual electrostatic force at the minimizing potential. Indeed, in
such case,

VmðdÞ ¼ �Vc
d2

d2 þ ðd þ DÞ2
; ð7:35Þ
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Fel
resðdÞ ¼

�0A

2
V2

c

d2 þ ðd þ DÞ2
: ð7:36Þ

Alternatively, in terms of VmðdÞ (up to V1; see below), the force is

Fel
resðdÞ ¼

�0A

2
V2

mðdÞ½d2 þ ðd þ DÞ2�
d4

: ð7:37Þ

Experimentally, VmðdÞ cannot be directly measured; measurements can only
determine it up to an overall offset V1 which arbitrarily depends on the sum of
contact potentials in the complete circuit between the plates. Therefore the force

should be written as proportional to ðVmðdÞ þ V1Þ2 instead of simply V2
mðdÞ; where

V1 is determined by a fit to experimental data, for example. In the limit D	 d; the
residual force is proportional to 1=d4 in the plane-offset plane case here considered
(see Fig. 7.4).

If we now consider the sphere-plane case, C0aðdÞ ¼ �2p�0R=d; and the
denominator of (7.37) becomes d2: If we further consider the surface divided up
into infinitesimal areas, each with a random potential, and integrate over the
surface to get the net force, there is a further reduction of the power of d in the
denominator (just as in the proximity force approximation), leaving the sphere-
plane force proportional to 1/d. This motivates writing the residual force as

FresðdÞ ¼
p�0R ðVmðdÞ þ V1Þ2 þ V2

rms

h i

d
; ð7:38Þ

where it is understood that VmðdÞ is experimentally measured, and V1 is a fit
parameter that represents a sort of surface average potential, plus circuit offsets
(this equation is supported both by numerical studies and by our experimental
results [45, 55, 56], and is valid when jV1j 	 jVmðdÞj) as observed. The last term
in (7.38) is the expected random (i.e., does not contribute to VmðdÞ) patch potential
force, but here should be thought of as a fit parameter that reflects the magnitude of
Vrms: With this result, the long range force observed in our experiment could be
explained, and our work with Ge was completed. The agreement with theory is
excellent, however, there is very little difference in theoretical prediction of the
force with and without the TE n ¼ 0 mode, so this work was not able to help with
that controversy.

Fig. 7.4 A toy model
illustrating the mechanism for
the generation of a distance-
dependent minimizing
electrostatic potential VmðdÞ
and electrostatic residual
force Fel

resðdÞ. (Public
Domain, by S.K. Lamoreaux)
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As a final note, the variations in surface potential could be a simple function of
position on the conducting surface, for example, due to stresses or impurities
within the samples. Alternatively, if there is a slight roughness to the surface, the
peaks could have different potentials than the valleys associated with surface
irregularities. This latter possibility appears to be a better model as we were unable
to detect a variation in Vm when the plates were moved relative to each other,
which might be expected for positional surface patches. However, the level of the
surface fluctuations is quite small, and for example is beyond the range of state of
the art Kelvin probes [57, 58]. These issues need further investigation.

7.4 Conclusions and Outlooks

In many respects, we can consider the measurement of the Casimir force between
surfaces as a mature field. However, many open issues remain, particularly in the
limits of accuracy that can be expected. In recent years, we have seen a number of
experiments claiming 1% precision, but many counter claims that such accuracy is
beyond what is possible due to finite knowledge of a plethora of corrections and
required absolute calibrations. Some open issues include the effects of finite
conductivity on the contribution of the TE n ¼ 0 surface mode; the usual Drude
model of the permittivity of a metal suggests that this mode does not contribute at
all to the force, reducing the force by a factor of two at large separations. It is
unclear whether additional short-range AFM type measurements will clear this
problem up, as at short distances, the correction is relatively small. Improved
measurements at distances above a few microns would appear to offer the best
prospects for bringing these issues to closure. Recent work with our torsion
pendulum system at Yale seems to be in favor of the no-TE n ¼ 0 mode, although
the precision is not yet sufficient to make a strong claim. Over the next few months
we hope to have new higher accuracy data analyzed.

The effects of patch potentials has not been fully investigated in all experiments
to date. For example, in my 1997 experiment [2], an anomalous component to the
1/d force would result in an error in the distance determination, which only needed
to be 0.1 micron to bring my experiment into agreement with the Bostöm and
Sernelius calculation. Likewise, the boundary modification experiment of Chan
et al. [34] did not consider in any obvious way excess forces due to electrostatic
patch effects, which might be expected to be substantial due to the sharp features
of the etched silicon trenches, and will vary as 1=d3 in the limit of the separation
much larger than the trench spacing. It is hard to imagine that such an effect is
more than 10% of the Casimir force, but some analysis and additional experiments
are necessary to eliminate the possibility of such a systematic effect.

In any case, a reasonable ultimate experimental goal is the attainment of 1%
agreement between theory and experiment, in terms of true accuracy; this is not a
question of simple precision. Hopefully the readers of this review will realize the
complexity and difficulty of the challenge presented by this goal.
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Chapter 8
Attractive and Repulsive Casimir–Lifshitz
Forces, QED Torques, and Applications
to Nanomachines

Federico Capasso, Jeremy N. Munday and Ho Bun Chan

Abstract This chapter discusses recent developments in quantum electrody-
namical (QED) phenomena, such as the Casimir effect, and their use in
nanomechanics and nanotechnology in general. Casimir–Lifshitz forces arise from
quantum fluctuations of vacuum or more generally from the zero-point energy of
materials and their dependence on the boundary conditions of the electromagnetic
fields. Because the latter can be tailored, this raises the interesting possibility of
designing QED forces for specific applications. After a concise review of the field
in the introduction, high precision measurements of the Casimir force using
MicroElectroMechanical Systems (MEMS) are discussed. Applications to non-
linear oscillators are presented, along with a discussion of their use as nanoscale
position sensors. Experiments that have demonstrated the role of the skin-depth
effect in reducing the Casimir force are then presented. The dielectric response of
materials enters in a non-intuitive way in the modification of the Casimir–Lifshitz
force between dielectrics through the dielectric function at imaginary frequencies
e(in). The latter is illustrated in a dramatic way by experiments on materials that
can be switched between a reflective and a transparent state (hydrogen switchable
mirrors) and by a large reduction of the Casmir force between a gold sphere and a
thick gold film, when the latter is replaced by an indium tin oxide (ITO) thick film.
Changing the electromagnetic density of states by altering the shape of the
interacting surfaces on a scale comparable to their separation is an effective
method to tailor Casimir–Lifshitz forces. Measurements of the latter between a
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silicon surfaces nanostructured with deep trenches and a sphere metalized with
thick gold have demonstrated the non-additivity of these forces and the ability to
tailor them by suitable surface patterning. Experiments on the Casimir effect in
fluids are discussed, including measurements of attractive and repulsive Casimir
forces conducted between solids separated by a fluid with e(in) intermediate
between those of the solids over a large frequency range. Such repulsive forces can
be used to achieve quantum levitation in a virtually friction-less environment, a
phenomenon that could be exploited in innovative applications to nanomechanics.
The last part of the chapter deals with the elusive QED torque between birefringent
materials and efforts to observe it. We conclude by highlighting future important
directions.

8.1 Introduction

According to QED, quantum fluctuations of the electromagnetic field give rise to a
zero-point energy that never vanishes, even in empty space [1]. In 1948, Casimir
[2] showed that, as a consequence, two parallel plates, made out of ideal metal (i.e.
with unity reflectivity at all wavelengths, or equivalently with infinite plasma
frequency), should attract each other in vacuum even if they are electrically
neutral, a phenomenon known as the Casimir effect. Because only the electro-
magnetic modes that have nodes on both walls can exist within the cavity, the
zero-point energy depends on the separation between the plates, giving rise to an
attractive force. This result in fact can be interpreted as due to the differential
radiation pressure associated with zero-point energy (virtual photons) between the
‘‘inside’’ and the ‘‘outside’’ of the plates, which leads to an attraction because the
mode density in free space is higher than the density of states between the plates
[1]. The interpretation in terms of zero-point energy of the Casimir effect was
suggested by Niels Bohr, according to Casimir’s autobiography [3]. An equivalent
derivation of excellent intuitive value, leading to the Casimir force formula, was
recently given by Jaffe and Scardicchio in terms of virtual photons moving along
ray optical paths [4, 5]. Between two parallel plates, the Casimir force assumes the
form [2]:

Fc ¼ �p2�hcA=240d4; ð8:1Þ

where c is the speed of light, �h is Planck’s constant divided by 2p, A is the area of
the plates, and d is their separation.

The pioneering experiments of Spaarnay [6] were not able to unambiguously
confirm the existence of the Casimir force, due to, among other factors, the large
error arising from the difficulty in maintaining a high degree of parallelism
between the plates. Clear experimental evidence for the effect was presented by
van Blokland and Overbeek in 1978 who performed measurements between a
metallic sphere and a metallic plate [7], thus eliminating a major source of
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uncertainty. Final decisive verification is due to Lamoureaux, who in 1997
reported the first high precision measurements of the Casimir force using a tor-
sional pendulum and sphere-plate configuration [8]. This was followed by several
experimental studies, which have produced further convincing confirmation [9–16]
for the Casimir effect including the parallel plate geometry [13].

Between a sphere and a plate made of ideal metals the Casimir force reads [17]:

Fc ¼ �p3�hcR=360d3; ð8:2Þ

where R is the radius of the sphere and d is the minimum distance between the
sphere and the plate. In the derivation of (8.2) it was assumed that this distance is
much smaller than the sphere diameter (proximity force approximation).

Several reviews on Casimir forces and on the closely related van der Waals
forces have recently appeared [18–27]. Both forces are of QED origin. The key
physical difference is that in the Casimir case retardation effects due to the finite
speed of light cannot be neglected, as in the van der Waals limit, and are actually
dominant [1]. This is true for distances such that the propagation time of light
between the bodies or two molecules is much greater than the inverse character-
istic frequency of the material or of the molecules (for example the inverse plasma
frequency in the case of metals and the inverse of the frequency of the dominant
transition contributing to the polarizability a (x), in the case of molecules) [1]. The
complete theory for macroscopic bodies, developed by Lifshitz, Dzyaloshinskii,
and Pitaevskii, is valid for any distance between the surfaces and includes in a
consistent way both limits [28, 29].

This formulation, a generalization of Casimir’s theory to dielectrics, including
of course non-ideal metals, is the one which is most often used for comparison
with experiments. In this theory, the force between two uncharged surfaces can be
derived according to an analytical formula (often called the Lifshitz formula) that
relates the zero-point energy to the dielectric functions of the interacting surfaces
and of the medium in which they are immersed. This equation for the force
between a sphere and plate of the same metal is [28]:

F1ðzÞ ¼
�h

2pc2
R

Z1

0

Z1

0

pn2 ln 1� s� pð Þ2

sþ pð Þ2
e�2pzn=c

" #(

þ ln 1� ðs� peÞ2

ðsþ peÞ2
e�2pzn=c

" #)
dpdn; ð8:3Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� 1þ p2

p
, eðinÞ is the dielectric function of the dielectric or metal

evaluated at imaginary frequency and the integration is over all frequencies and
wavevectors of the modes between the plates. The expression for eðinÞ is given by:

eðinÞ ¼ 1þ 2
p

Z1

0

x � e00ðxÞ
x2 þ n2 dx; ð8:4Þ
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where e00ðxÞ is the imaginary part of the dielectric function. The integral in (8.4)
runs over all real frequencies, with non-negligible contributions arising from a
very wide range of frequencies. (8.3) and (8.4) show that the optical properties of
the material influence in a non-intuitive way the Casimir force. The finite con-
ductivity modifications to the Casimir force based on the frequency dependence of
the dielectric function can be calculated numerically using the tabulated complex
dielectric function of the metal [30–34]. This leads to a reduction in the Casimir
force compared to the ideal metal case given by (8.1). Physically this can be
understood from the fact that in a real metal the electromagnetic field penetrates by
an amount of the order of the skin-depth which leads to an effective increase of the
plate separation. See also the Chap. 10 by van Zwol et al. in this volume for a
further discussion of the optical properties of materials used in Casimir force
measurements.

The second modification, due to the roughness of the metallic surfaces, tends to
increase the attraction [35, 36] because the portions of the surfaces that are locally
closer contribute much more to the force due its strong nonlinearity with distance.

As previously mentioned, at very short distances, the theory of Lifshitz,
Dzyaloshinskii, and Pitaevskii, also provides a complete description of the non-
retarded van der Waals force [37, 38]. Recently Henkel et al. [39] and Intravaia
et al. [40] have provided a physically intuitive description of the van der
Waals limit for real metals with dispersion described by the Drude model. At finite
plasma frequency one must include surface plasmons in the counting of electro-
magnetic modes, i.e. modes associated with surface charge oscillations which
exponentially decay away from the surface. At short distances (small compared to
the plasma wavelength) the Casimir energy is given by the shift in the zero-point
energy of the surface plasmons due to their Coulomb (electrostatic) interaction.
The corresponding attractive force between two parallel plates is then given
by [41]:

Fc ¼ �
�hcp2A

290kpd3
: ð8:5Þ

This formula is an approximation of the short distance limit of the more
complete theory [28, 29]. At large separations ðd � kpÞ, retardation effects give
rise to a long-range interaction that in the case of two ideal metals in vacuum
reduces to Casimir’s result.

In a number of studies several authors [11, 14, 15] have claimed agreement
between Casimir force experiments and theory at the 1% level or better—a claim
that has been challenged in some of the literature [12, 42–44]. The authors of [44]
have pointed out that the strong non-linear dependence of the force on distance
limits the precision in the absolute determination of the force. Uncertainties in the
knowledge of the dielectric functions of the thin metallic films used in the
experiments and in the models of surface roughness used to correct the Lifshitz
theory also typically give rise to errors larger than 1% in the calculation of the
expected force [12, 43, 44]. It has also been shown that the calculation of the
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Casimir force can vary by as much as 5% depending on which values are chosen
for the optical properties of a given material [45]. Another uncertainty is related to
the model of surface roughness and in its measurement that translates to an
uncertainty in the comparison between theory and experiments. We conclude that
claims of agreement between theory and experiment at the 1% level or less are
questionable due to experimental errors and uncertainties in the calculations. For a
further discussion of modern Casimir force experiments, see the Chap. 7 by
Lamoreaux in this volume.

Apart from its intrinsic theoretical interest, the Casimir interaction has recently
received considerable attention for its possible technological consequences. The
Casimir force, which rapidly increases as the surface separation decreases, is the
dominant interaction mechanism between neutral objects at sub-micron distances.
In light of the miniaturization process that is moving modern technology towards
smaller electromechanical devices, it is reasonable to ask what role the zero-point
energy might play in the future development of micro- and nanoelectromechanical
systems (MEMS and NEMS) [16, 46, 47].

One of the first experiments was to design a micro-machined torsional device
that could be actuated solely by the Casimir force [16]. The results not only
demonstrated that this is indeed possible, but also provided one of the most sen-
sitive measurements of the Casimir force between metallized surfaces. In their
second experiment [47], the same group showed that the Casimir attraction can
also influence the dynamical properties of a micromachined device, changing its
resonance frequency, and giving rise to hysteretic behavior and bistability in its
frequency response to an ac excitation, as expected for a non-linear oscillator. The
authors proposed that this device could serve as a nanometric position sensor. The
above developments are covered in Sect. 8.2.

A particularly interesting direction of research on Casimir–Lifshitz forces is the
possibility of designing their strength and spatial dependence by suitable control of
the boundary conditions of the electromagnetic fields. This can be done by
appropriate choice of the materials [48, 49], of the thickness of the metal films [50]
and the shape of the interacting surfaces [51–53]. By nanoscale periodic patterning
of one of the metallic surfaces and controlling the ratio of the period to the depth
of the grooves the Casmir force has been significantly tailored as discussed in Sect.
8.3. This section also discusses experiments aimed at elucidating the role of the
skin-depth effect in the Casimir force, by coating one of the surfaces with suitably
engineered thin films.

Section 8.3 also covers one of the most interesting features of long-range QED
forces: repulsive forces which can arise between suitable surfaces when their
dielectric functions and that of the medium separating them satisfy a particular
inequality [20, 29, 37, 38]. Measurements of Casimir–Lifshitz forces in fluids are
presented, including the measurements of a repulsive force between gold and
silicon dioxide separated by bromobenzene. Methods of measuring these forces are
discussed in detail and the phenomenon of ‘‘quantum levitation’’ is analyzed along
with intriguing applications to nanotechnology such as frictionless bearings and
related devices.
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QED can give rise to other exotic macroscopic interaction phenomena between
materials with anisotropic optical properties such as birefringent crystals. For
example a torque due to quantum fluctuations between plates made of uniaxial
materials has been predicted but has not yet been observed [54, 55]. Section 8.4 is
devoted to discussion of this remarkable effect and related calculations. Specific
experiments are proposed along with novel applications.

Section 8.5 provides an outlook on novel directions in this field.

8.2 MEMS Based on the Casimir Force

MEMS are a silicon-based integrated circuit technology with moving mechanical
parts that are released by means of etching sacrificial silicon dioxide layers fol-
lowed by a critical point drying step [56]. They have been finding increasing
applications in several areas ranging from actuators and sensors to routers for
optical communications. For example the release of the airbag in cars is controlled
by a MEMS based accelerometer. In the area of lightwave communications the
future will bring about new optical networks with a mesh topology, based on dense
wavelength division multiplexing. These intelligent networks will be adaptive and
self-healing with capabilities of flexible wavelength provisioning, i.e. the possi-
bility to add and drop wavelengths at specific nodes in response to real time
bandwidth demands and rerouting. The lambda router [57, 58], a device consisting
of an array of thousands of voltage controlled mirrors, which switches an incoming
wavelength from one optical fiber to any of many output fibers, is an example of a
MEMS technology that might impact future networks.

The development of increasingly complex MEMS will lead to more attention to
scaling issues, as this technology evolves towards NanoElecroMechanicalSystems
(NEMS). Thus, it is conceivable that a Moore curve for MEMS will develop
leading to increasingly complex and compact MEMS having more devices in close
proximity [59, 60]. This scenario will inevitably lead to-having to face the issue of
Casimir interactions between metallic and dielectric surfaces in close proximity
with attention to potentially troublesome phenomena such as stiction, i.e. the
irreversible coming into contact of moving parts due to Casimir/van der Waals
forces [59]. On the other hand such phenomena might be usable to one’s advantage
by adding functionality to NEMS based architectures. See also the Chap. 9 by
Decca et al. in this volume for additional discussions of MEMS and NEMS based
Casimir force experiments.

8.2.1 Actuators

In the first experiment [16], the authors designed and demonstrated a micro-
machined torsional device that was actuated by the Casimir force and that
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provided a very sensitive measurement of the latter. This device (Fig. 8.1) was
subsequently used in a variety of experiments [14, 15, 50, 53]. It consists of a
3.5 lm thick, 500 lm square heavily doped polysilicon plate freely suspended on
two of its opposite sides by thin torsional rods. The other ends of the torsional rods
are anchored to the substrate via support posts. Two fixed polysilicon electrodes
are located symmetrically underneath the plate, one on each side of the torsional
rod. Each electrode is half the size of the top plate. There is a 2 lm gap between
the top plate and the fixed electrodes created by etching a SiO2 sacrificial layer.
The top plate is thus free to rotate about the torsional rods in response to an
external torque.

A schematic of the actuation mechanism based on the Casimir force is shown in
Fig. 8.1. A polystyrene sphere with radius R = 100 lm is glued on the end of a
copper wire using conductive epoxy. A 200 nm thick film of gold with a thin
titanium adhesion layer is then evaporated on both the sphere and the top plate of
the torsional device. An additional 10 nm of gold is sputtered on the sphere to
provide electrical contact to the wire. The micromachined device is placed on a
piezoelectric translation stage with the sphere positioned close to one side of the
top plate. As the piezo extends, it moves the micromachined device towards the
sphere. The rotation of the top plate in response to the attractive Casimir force is
detected by measuring the imbalance of the capacitances of the top plate to the two
bottom electrodes at different separations between the sphere and the top plate.
The measurement is performed at room temperature and at a pressure of less than 1
mTorr. Note that an external bias needs to be applied to the sphere to compensate
for the potential V0 resulting from work function differences between the metallic
surfaces and other effects such as contact potentials associated with grounding,
patch potential, etc. [7]. The value of V0 is typically in the 10 to 100 mV range.

Figure 8.2 shows the results of that measurement. One sees that the data points
lie above the curve given by (8.2). Two main effects are at work in this

Fig. 8.1 MEMS Casimir force detection setup: schematic of the experiment (not to scale) and
scanning electron micrographs of the micromachined torsional device used for the measurement
of the Casimir force with a close-up of one of the torsional rods anchored to the substrate. As the
metallic sphere approaches the top plate, the Casimir force causes a rotation of the torsional rod
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discrepancy. The first one is the finite reflectivity of the metal. This causes virtual
photons associated with vacuum fluctuations to penetrate into the metal (skin
effect) increasing the effective sphere-plate separation thus decreasing the force.
The second effect is the surface roughness, which is estimated from AFM mea-
surements to be a few tens of nanometers depending on the particulars of the
experiment. It enhances the Casimir force due to the strong nonlinear dependence
with distance. Both effects can be accounted for within the framework of Lifshitz
theory, giving a much smaller discrepancy between theory and experiments.

A bridge circuit enables one to measure the change in capacitance to 1 part in
2� 105, equivalent to a rotation angle of 8� 10�8 rad, with integration time of 1 s
when the device is in vacuum. With a torsional spring constant as small as 1:5�
10�8 N m rad-1, the device yields a sensitivity of 5 pN Hz-1/2 for forces acting at
the edge of the plate. Such force sensitivity is comparable to the resolution of
conventional atomic force microscopes. The device is insensitive to mechanical
noise from the surroundings because the resonant frequency is maintained high
enough (*2 kHz) due to the small moment of inertia of the plate.

8.2.2 Nonlinear Oscillators

While there is vast experimental literature on the hysteretic response and bista-
bility of nonlinear oscillators in the context of quantum optics, solid-state physics,
mechanics, and electronics, the experiment summarized in this section represents
to our knowledge, the first observation of bistability and hysteresis caused by a
QED effect. A simple model of the Casimir oscillator consists of a movable
metallic plate subjected to the restoring force of a spring obeying Hooke’s law and
the nonlinear Casimir force arising from the interaction with a fixed metallic
sphere (Fig. 8.3). For separations d larger than a critical value [61], the system is
bistable: the potential energy consists of a local minimum and a global minimum

Fig. 8.2 Experimental
measurement of the Casimir
force from the MEMS
torsional apparatus. Angle of
rotation of the top plate in
response to the Casimir force
as a function of distance. The
solid line is the predicted
Casimir force (8.2) without
corrections for surface
roughness or finite
conductivity. Dots are
experimental results
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separated by a potential barrier (Fig. 8.3). The local minimum is a stable equi-
librium position, about which the plate undergoes small oscillations. The Casimir
force modifies the curvature of the confining potential around the minimum, thus
changing the natural frequency of oscillation and also introduces higher order
terms in the potential, making the oscillations anharmonic.

For this experiment, Fig. 8.1 was used. The torsional mode of oscillation
was excited by applying a driving voltage to one of the two electrodes that is
fixed in position under the plate. The driving voltage is a small ac excitation
Vac with a dc bias Vdc1 to linearize the voltage dependence of the driving
torque. The top plate is grounded while the detection electrode is connected to
a dc voltage Vdc2 through a resistor. Oscillatory motion of the top plate leads to
a time varying capacitance between the top plate and the detection electrode.
For small oscillations, the change in capacitance is proportional to the rotation
of the plate. The detection electrode is connected to an amplifier and a lock-in
amplifier measures the output signal at the excitation frequency.

To demonstrate the nonlinear effects introduced by the Casimir force, the
piezo was first retracted until the sphere was more than 3.3 lm away from
the oscillating plate so that the Casimir force had a negligible effect on the
oscillations. The measured frequency response shows a resonance peak that is
characteristic of a driven harmonic oscillator (peak I in Fig. 8.4a), regardless of
whether the frequency is swept up (hollow squares) or down (solid circles).
This ensures that the excitation voltage is small enough so that intrinsic non-
linear effects in the oscillator are negligible in the absence of the Casimir force.
The piezo was then extended to bring the sphere close to the top plate while

Fig. 8.3 Inset a simple model of the nonlinear Casimir oscillator (not to scale). Main figure:
elastic potential energy of the spring (dotted line, spring constant 0.019 N m-1), energy
associated with the Casimir attraction (dashed line) and total potential energy (solid line) as a
function of plate displacement. The distance d between the sphere (100 lm radius) and the
equilibrium position of the plate in the absence of the Casimir force, is chosen to be 40 nm
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maintaining the excitation voltage at fixed amplitude. The resonance peak shifts
to lower frequencies (peaks II, III, and IV), by an amount that is consistent with
the distance dependence of the force in Fig. 8.2. Moreover, the shape of the
resonance peak deviates from that of a driven harmonic oscillator and becomes
asymmetric. As the distance decreases, the asymmetry becomes stronger and
hysteresis occurs. This reproducible hysteretic behavior is characteristic of
strongly nonlinear oscillations [62].

The solid lines in Fig. 8.4a show the predicted frequency response of the
oscillator including the first, second, and third spatial derivatives of the Casimir
force. Higher orders terms or the full nonlinear potential would need to be included
to achieve a better agreement with experiments.

An alternative way to demonstrate the ‘‘memory’’ effect of the oscillator is to
maintain the excitation at a fixed frequency and vary the distance between the
sphere and the plate (Fig. 8.4b). As the distance changes, the resonance frequency
of the oscillator shifts, to first order because of the changing force gradient. In
region 1, the fixed excitation frequency is higher than the resonance frequency and
vice versa for region 3. In region 2, the amplitude of oscillation depends on the
history of the plate position. Depending on whether the plate was in region 1 or
region 3 before it enters region 2, the amplitude of oscillation differs by up to a
factor of 6. This oscillator therefore acts as a nanometric sensor for the separation
between two uncharged metallic surfaces.

Fig. 8.4 a Hysteresis in the frequency response induced by the Casimir force on an otherwise
linear oscillator. Hollow squares (solid circles) are recorded with increasing (decreasing)
frequency. Solid lines show the predicted frequency response of the oscillator. The distance
z between the oscillator and the sphere is 3.3 lm, 141 nm, 116.5 nm, and 98 nm for peaks I, II,
III, and IV, respectively. The excitation amplitude is maintained constant at 55.5 mV for all four
separations. The solid lines are the calculated response. The peak oscillation amplitude for the
plate is 39 nm at its closest point to the sphere. b Oscillation amplitude as a function of distance
with excitation frequency fixed at 2748 Hz
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8.3 The Design and Control of Casimir Forces

In this section we discuss experiments aimed at tailoring the Casimir–Lifshitz force
via control of the boundary conditions of the electromagnetic fields. Several exam-
ples will be discussed: (1) control of the geometry of the surfaces by nanostructuring
with suitable corrugations; (2) control of the thickness of the metallic layers
deposited on the juxtaposed surfaces; (3) choice of materials that can be reversibly
switched from metallic to transparent and conductive oxides (4) interleaving fluids
between the interacting surfaces; (5) material combinations that give rise to repulsive
Casimir–Lifshitz force; (6) devices based on repulsive forces.

8.3.1 Modification of the Casimir Force by Surface
Nanostructuring

There exists a close connection between the Casimir force between conductors and
the van der Waals (vdW) force between molecules (see the chapter of Henkel et al.
Chap. 11 in this volume for a discussion of atom-surface effects). For the former,
the quantum fluctuations are often associated with the vacuum electromagnetic
field, while the latter commonly refers to the interaction between fluctuating
dipoles. In simple geometries such as two parallel planes, the Casimir force can be
interpreted as an extension of the vdW force in the retarded limit. The interaction
between molecules in the two plates is summed to yield the total force. However,
such summation of the vdW force is not always valid for extended bodies because
the vdW force is not pairwise additive. The interaction between two molecules is
affected by the presence of a third molecule. Recently Chan and coworkers [53]
reported measurements of the Casimir force between nanostructured silicon sur-
faces and a gold sphere (Fig. 8.5). One of the interacting objects consists of a
silicon surface with nanoscale, high aspect ratio rectangular corrugations. The
other surface is a gold-coated glass sphere attached onto a micromechanical tor-
sional oscillator similar to the one discussed in the previous section. Lateral
movements of the surfaces are avoided by positioning the corrugations perpen-
dicular to the torsional axis. The Casimir force gradient is measured from the shifts
in the resonant frequency of the oscillator at distances between 150 and 500 nm.
Deviations of up to 20% from PAA are observed, demonstrating the strong
geometry dependence of the Casimir force.

Figure 8.5a shows a cross section of an array of rectangular corrugations with
period of 400 nm (sample B) fabricated on a highly p-doped silicon substrate. Two
other samples, one with period 1 lm (sample A) and the other with a flat surface,
are also fabricated; the trenches have a depth t *1 lm.

The geometry of nanoscale, rectangular trenches was chosen because the
Casimir force on such structures is expected to exhibit large deviations from
pairwise additive approximation (PAA). Consider the interaction between the
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trench array and a parallel flat surface at distance z from the top surface of the
trenches. In the pairwise additive picture, this interaction is a sum of two contri-
butions: the volume from the top surface to the bottom of the trench and
the volume below the bottom of the trench. The latter component is negligible
because the distance to the other surface is more than 1 lm, larger than the
distance range at which Casimir forces can be detected in the experiment. For a
trench array of 50% duty cycle, the former component yields exactly half of the
interaction between two flat surfaces Fflat regardless of the periodicity because half
of the material is removed [63]. In practice, the trench arrays are created with duty
cycle close to but not exactly at 50%. Under PAA, the total force is equal to pFflat,
where p is the fraction of solid volume. The calculation of the Casimir force in
such corrugated surfaces, in contrast, is highly nontrivial. While perturbative
treatments are valid for smooth profiles with small local curvature, they are
impractical for the deep, rectangular corrugations.

Using a different approach based on path integrals, Büscher and Emig [63]
calculated the Casimir force for the corrugated geometry made of perfect con-
ductors. Strong deviations from PAA were obtained when the ratio z/k is large,
where k is the pitch. In the limit when k goes to zero, the force on a trench array
approaches the value between flat surfaces, leading to deviations from PAA by a
factor of 2. Such large deviations occur because the Casimir force is associated
with confined electromagnetic modes with wavelength comparable to the sepa-
ration between the interacting objects. When k � z, these modes fail to penetrate
into the trenches, rendering the Casimir force on the corrugated surface equal to a
flat one.

For these experiments the gradient of the Casimir force on the silicon trench
arrays was measured using a gold-coated sphere attached to a micromechanical
torsional oscillator similar to the nonlinear Casmir oscillator previously discussed.
The oscillator consists of a 3.5 lm thick, 500 lm square silicon plate suspended

Fig. 8.5 a Cross section of
rectangular trenches in
silicon, with periodicity of
400 nm and depth of 0.98 lm
(sample B). b Top view of the
structure. c Schematic of the
experimental setup (not to
scale) including the
micromechanical torsional
oscillator, gold spheres, and
silicon trench array.
d Measurement scheme with
electrical connections.
Excitation voltages Vac1 and
Vac2 are applied to the bottom
electrodes

260 F. Capasso et al.



by two torsional rods. As shown in Fig. 8.5c two glass spheres, each with radius
R of 50 lm, are stacked and attached by conductive epoxy onto the oscillator at a
distance of b = 210 lm from the rotation axis. The large distance (*200 lm)
between the oscillator plate and the corrugated surface ensures that the attraction
between them is negligible and only the interaction between the top sphere and the
corrugated surface is measured. Before attachment, a layer of gold with thickness
400 nm is sputtered onto the spheres. Two electrodes are located between the plate
and the substrate. Torsional oscillations in the plate are excited when the voltage
on one of the electrodes is modulated at the resonant frequency of the oscillator
(f0 = 1783 Hz, quality factor Q = 32,000). For detecting the oscillations, an
additional ac voltage of amplitude 100 mV and frequency of 102 kHz is applied to
measure the capacitance change between the top plate and the electrodes. A phase-
locked loop is used to track the shifts in the resonance frequency [16, 47] as the
sphere approaches the other silicon plate through extension of a closed-loop
piezoelectric actuator. As shown in Fig. 8.5c, the movable plate is positioned so
that its torsional axis is perpendicular to the trench arrays in the other silicon
surface. Such an arrangement eliminates motion of the movable plate in response
to possible lateral Casimir forces [64] because the spring constant for translation
along the torsional axis is orders of magnitude larger than the orthogonal direction
in the plane of the substrate.

The force gradient is measured between the gold sphere and a flat silicon
surface [solid circles in Fig. 8.6a] obtained from the same wafer on which the
corrugated samples A and B were fabricated. The main source of uncertainty in the
measurement (*0.64 pN lm-1 at z = 300 nm) originates from the thermome-
chanical fluctuations of the micromechanical oscillator. As the distance decreases,
the oscillation amplitude is reduced to prevent the oscillator from entering the
nonlinear regime. At distances below 150 nm, the oscillation amplitude becomes
too small for reliable operation of the phase-locked loop. In Fig. 8.6a, the line
represents the theoretical force gradient between the gold sphere and the flat
silicon surface, including both the finite conductivity and roughness corrections.
Lifshiftz’s equation is used to take into account the finite conductivity. For the
gold surface, tabulated values of the optical properties [32] were used. For the
silicon surface, the tabulated values were further modified by the concentration of
carriers (2 9 1018 cm-3) determined from the dc conductivity of the wafer
(0.028 X cm).

Using an atomic force microscope, the main contribution to the roughness was
found to originate from the gold surface (*4 nm rms) rather than the silicon wafer
(*0.6 nm rms), which was taken into account using a geometrical averaging
method [65]. The Casimir force gradients F0c;A and F0c;B between the same gold
sphere and the corrugated samples A and B were then measured and plotted in
Figs. 8.6b and c. As described earlier, under PAA, the forces on the trench arrays
(where z is measured from the top of the corrugated surface) are equal to the force
on a flat surface multiplied by the fractional volumes pA and pB. The solid lines in
Fig. 8.6b and c represent the corresponding force gradients, pAF0c,flat and pB

0F0c,flat,
respectively. Measurement of the force gradient was repeated 3 times for each
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sample, yielding results that are consistent within the measurement uncertainty. To
analyze the deviations from PAA, the ratios qA = F0c,A/pAFc,flat and qB = F0c,B/
pBF0c,flat are plotted in Fig. 8.6d. The ratio q equals one if PAA is valid. For
sample A with k/a = 1.87, where a is half the depth of the trenches, the measured
force deviates from PAA by *10%. In sample B with k/a = 0.82, the deviation
increases to *20%. For 150 nm \ z \ 250 nm, the measured Casimir force
gradients in both samples show clear deviations from PAA. At larger distances, the
uncertainty increases considerably as the force gradient decreases. We compare
our experimental results on silicon structures to calculations by Büscher and Emig
[63] on perfect conductors [solid and dashed lines in Fig. 8.6d]. In this calculation,
the Casimir force between a flat surface and a corrugated structure with p = 0.5
was determined for a range of k/a using a path integral approach. Since R � z,
the proximity force approximation allows a direct comparison of our measured
force gradient using a sphere and the predicted force that involved a flat surface.
The measured deviation in sample B is larger than sample A, in agreement with the
notion that geometry effects become stronger as k/a decreases. However, the
measured deviations from PAA are smaller than the predicted values by about
50%, significantly exceeding the measurement uncertainty for 150 nm \
z \ 250 nm. Such discrepancy is, to a certain extent, expected as a result of the
interplay between finite conductivity and geometry effects. The relatively large
value of the skin-depth in silicon (*11 nm at a wavelength of 300 nm) could
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Fig. 8.6 Measured Casimir force gradient between the same gold sphere and a a flat silicon
surface, F0c,flat, b sample A, F0c,A (k = 1 lm), and c sample B, F0 c,B (k = 400 nm). In a, the line
represents the theoretical Casimir force gradient including finite conductivity and surface
roughness corrections. In b and c, the lines represent the force gradients expected from PAA
(pF0c,flat). d Ratio q of the measured Casimir force gradient to the force gradient expected from
PAA, for samples A (k/a = 1.87, hollow circles) and B (k/a = 0.82, solid squares), respectively.
Theoretical values [63] for perfectly conducting surfaces are plotted as the solid (k/a = 2) and
dashed lines (k/a = 1)
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reduce the deviations from PAA. See also the Chap. 4 of Lambrecht et al. in this
volume for additional information on material and geometry effects.

8.3.2 Modification of the Casimir Force Between Metallic
Films Using the Skin-Depth Effect

The use of ultra-thin metallic coatings (i.e. of thickness comparable to the skin-
depth at wavelengths comparable to the distance between the surfaces) over
transparent dielectrics, as opposed to thick layers, as employed in the experiments
of Sect. 8.2, should alter the distance dependence of the force.

At sub-micron distances, the Casimir force critically depends on the reflectivity of
the interacting surfaces for wavelengths in the ultraviolet to far infrared [28, 66]. The
attraction between transparent materials is expected to be smaller than that between
highly reflective mirrors as a result of a less effective confinement of electromagnetic
modes inside the optical cavity defined by the surfaces. A thin metallic film can be
transparent to electromagnetic waves that would otherwise be reflected by bulk
metal. In fact, when their thickness is much less than the skin-depth, most of the light
passes through the film. Consequently, the Casimir force between metallic films
should be significantly reduced when its thickness is less than the skin-depth at
ultraviolet to infrared wavelengths. For most common metals, this condition is
reached when the thickness of the layer is *10 nm.

The technique presented in [66] was recently perfected in terms of the cali-
bration method used and allowed the accurate measurement of the Casimir force
for different metal film thickness on the sphere [50].

Demonstrating the skin-depth effect requires careful control of the thickness
and surface roughness of the films. The sphere was glued to its support and
subsequently coated with a 2.92 nm titanium (Ti) adhesion layer and a 9.23 nm
film of palladium (Pd). The thickness of the Ti layer and of the Pd film was
measured by Rutherford back scattering [67] on a silicon slice that was evaporated
in close proximity to the sphere. After evaporation, the sphere was imaged with an
optical profiler to determine its roughness and mounted inside the experimental
apparatus. After completion of the Casimir force measurements, the sphere was
removed from the experimental apparatus, coated with an additional 200 nm of Pd,
analyzed with the optical profiler, and mounted back inside the vacuum chamber
for another set of measurements. It is important to stress that the surface roughness
measured before and after the deposition of the thicker Pd layer was the same
within a few percent.

In Fig. 8.7, the results of the thin film measurements are compared with those
obtained after the evaporation of the thick layer of Pd. The measurements were
repeated 20 times for both the thin and thick films. The results clearly demonstrate
the skin-depth effect on the Casimir force. The force measured with the thin film of
Pd is in fact smaller than that observed after the evaporation of the thicker film.
Measurements were repeated with a similar sphere: the results confirmed the
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skin-depth effect. To rule out possible spurious effects, the data were compared
with a theoretical calculation (Fig. 8.7) based on the Lifshitz theory which
includes the dielectric function of the metallic coatings and the effects of the
surface roughness. The magnitude and spatial distribution of the latter was mea-
sured with an optical profilometer and incorporated in the modified Lifshitz
equation [36, 50, 68]. The dielectric functions used in the calculation were
obtained from Refs. [32–34, 69], and a suitable modification of Lifshitz’s theory to
account for multiple thin films was used [37].

The discrepancy observed in the case of the thin metallic film is not surprising.
The calculation of the force is based on two approximations: (i) the dielectric
function for the metallic layers (both titanium and palladium) is assumed to be
equal to the one tabulated for bulk-materials, and (ii) the model used to describe
the dielectric function of polystyrene is limited to a simplified two-oscillator
approximation [69]. These assumptions can lead to significant errors in the esti-
mated force.

8.3.3 Casimir Force Experiments with Transparent Materials

In this section we explore situations in which one of the two noble metal surfaces
(typically gold) in Casimir force experiments is replaced by a material that is
transparent over a significant range of wavelengths. The expectation would be a
large reduction of the Casimir force. Experiments discussed in this section have
shown however that to achieve such a reduction the transparency window must be
very large. The reason is that, as seen earlier in this chapter, the Casimir–Lifshitz
force depends on the dielectric function at imaginary frequencies, which depends
on all wavelengths including ones much larger than the plate separation. Here we

Fig. 8.7 Comparison
between Casimir force
measurements and
calculations for a sphere-plate
geometry. Filled circles
indicate data obtained with a
thick metallic film deposited
on the plate, while open
circles are data for a thin film.
Continuous and dashed lines
represent theoretical
predictions for thick and thin
films, respectively
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discuss in detail the case where one of the gold surfaces in the sphere-plate
geometry is replaced by a metallic superlattice in which the reflectivity can be
tuned by hydrogenation and also include a discussion of a recent experiment in
which one of the two surfaces consists of Indium Tin Oxide (ITO), a transparent
conductor.

Using the experimental set-up described in Sect. 8.2, the Casimir force
between a gold-coated plate and a sphere coated with a Hydrogen Switchable
Mirror (HSM) [70] was measured for separations in the 70 to 400 nm range
[66]. The HSMs are metallic superlattices obtained by repeating seven con-
secutive evaporations of alternate layers of magnesium (10 nm) and nickel
(2 nm), followed by an evaporation of a thin film of palladium (5 nm). The
inset of Fig. 8.8 shows a glass slide coated according to this procedure, both in
its as deposited state, and in its hydrogenated state. It is evident that the optical
properties of the film are very different in the two situations. The transparency
of the film was measured over a wavelength range between 0.5 and 3 lm, and
its reflectivity at k = 660 nm, keeping the sample in air and in an argon–
hydrogen atmosphere (4% hydrogen). The results are in good agreement with
the values reported in [71].

The results of Casimir force measurements obtained in air and in a hydrogen-
rich atmosphere are shown in Fig. 8.8. It is evident that the force does not change
in a discernible way upon hydrogenation of the HSM [66].

In order to explain this apparently surprising result, one should first note that the
dielectric properties of the HSMs used in this experiment are known only in a

Fig. 8.8 Casimir force between a gold-coated plate and a sphere coated with a Hydrogen
Switchable Mirror (HSM) as a function of the distance, in air (open squares) and in argon–
hydrogen (filled circles). Inset A HSM in air and in hydrogen. A similar mirror was deposited on
the sphere of our experimental apparatus
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limited range of wavelengths, spanning approximately the range 0.3–2.5 lm [71].
However, because the separation between the sphere and the plate in the experi-
ment is in the 100 nm range, one could expect that it is not necessary to know the
dielectric function for wavelengths longer than 2.5 lm, because those modes
should not give rise to large contributions to the force. A mathematical analysis
carried out using ad hoc models to describe the interacting surfaces has shown that
this is not necessarily the case. Because the Casimir force depends on the dielectric
function at imaginary frequency (8.4) and the integral in the latter is over all
frequencies, long wavelengths compared to the separation between the sphere and
the plate can make a significant contribution to the force. Thus, one of the reasons
for not having observed a change in the latter upon hydrogenation is likely related
to the fact that that the imaginary part of the permittivity might not change sig-
nificantly at long wavelengths. Recently, a more accurate analysis of the experi-
ment [72] confirmed this result, but also added an important detail: for a correct
comparison of data with theory it is necessary take into account also the presence
of the 5 nm thick palladium layer that was deposited on top of the HSMs to
prevent oxidation and promote hydrogen absorption. Although this layer is fairly
transparent to all wavelengths from ultraviolet to infrared, its contribution to the
interaction reduces the expected change of the force by nearly a factor of two. It is
thus the combination of the effect of the reflectivity at long wavelengths and of the
thin palladium film that limits the magnitude of the change of the force following
hydrogenation. Still, calculations show that a small change in the Casimir force
upon hydrogenation should be observable with improved experimental precision
and with the use of HSMs of different composition [72].

Recently the group of Davide Iannuzzi reported a precise measurement in air of
the Casimir force between a gold-coated sphere and a glass plate coated with either
a thick gold layer or a highly conductive, transparent ITO film [73]. The decrease
of the Casimir force due to the different dielectric properties of the reflective gold
layer and the transparent oxide film resulted to be as high as 40%–50% at all
separations (from 50 to 150 nm). Physically the large reduction of the Casimir
force when the Au surface is replaced by ITO is due to the much smaller plasma
frequency of ITO (in the near infrared spectrum) compared to that of Au (in the
ultraviolet). This experiment shows that, in the presence of a conductive oxide
layer, the Casimir force can still be the dominant interaction mechanism even in
air, and indicates that, whenever the design might require it, it is possible to tune
the Casimir attraction by a factor of 2.

8.3.4 Casimir Forces in a Fluid

To measure the Casimir force in a fluid, a modified atomic force microscopy
(AFM) method can be used as shown in Fig. 8.9 [74, 75]. Light from a su-
perluminescent diode is reflected off the back of the cantilever and is detected
by a four-quadrant photodetector, which is used to monitor the deflection of the
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cantilever, as in standard AFM measurements. The difference signal between
the top two quadrants and the bottom two quadrants is proportional to the
vertical deflection of the cantilever. A piezoelectric column within the AFM is
used to advance the cantilever and sphere toward the plate, and the piezo-
electric column’s advance is detected using a linear variable differential trans-
former, which minimizes nonlinearities and hysteresis inherent in piezoelectrics.
As the sphere approaches the plate, any force between the two will result in a
deflection of the cantilever, which will then be detected in the difference signal
from the four-quadrant detector. Cleaning and calibration techniques can
be used to isolate the Casimir force from other spurious forces (e.g. electrostatic
and hydrodynamic) and to convert the deflection signal into a force signal
[74–76].

Figure 8.10 shows the Casimir–Lifshitz force in ethanol between the gold-
coated sphere and gold-coated plate. The data for 51 runs are shown (dots) along
with the average of these data (circles) and Lifshitz theory for ethanol separating
the two surfaces and no added salt (solid line). The theory describes the data well,
despite the uncertainties in the optical properties. Deviations between the theory
and experiment below 30 nm are likely due to the inability of the theory to
accurately describe the surface roughness on these scales and the uncertainty in the
optical properties.

The Casimir–Lifshitz force for different salt concentrations is shown in
Fig. 8.10b along with Lifshitz’s theory without corrections due to electrostatics
or zero-frequency screening [75]. The data is shown for experiments with no
added salt (circles), 0.3 mM NaI (squares), and 30 mM NaI (triangles) and is
obtained by averaging 51 data set for each concentration. The inset shows a log–
log plot of the data. The difference between the forces due to the modification of
the zero-frequency contribution and the Debye screening are greater for smaller
separations and both are calculated to be *15 pN in the range from 30–40 nm;
however, the sensitivity of our apparatus is not adequate to distinguish a sig-
nificant difference between these curves. Further experimental details can be
found in Ref. [75].

Fig. 8.9 Experimental setup.
A polystyrene sphere is
attached to an AFM
cantilever and coated with
gold. A laser beam is directed
through a few millimeter
opening in the conductive
coating of the cantilever
holder and is reflected off the
back of the cantilever to
monitor its motion
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8.3.5 Repulsive Forces and Casimir Levitation

Modification of the Casimir force is of great interest from both a fundamental and
an applied point-of-view. It is reasonable to ask whether such modifications can
lead to repulsive forces in special cases. In 1968, T.H. Boyer showed that for a
perfectly conducting spherical shell the Casimir effect should give rise to an
outward pressure [77]. Similar repulsive Casimir forces have also been predicted
for cubic and rectangular cavities with specific aspect ratios [78, 79]. However,
criticisms concerning these results have been raised [80], and recently the possi-
bility of repulsive forces based on topology for a wide class of systems has been
ruled out [81].

The possibility of topological repulsive Casimir forces, i.e. due to the geo-
metrical structure of the interacting metallic bodies in vacuum, is therefore con-
troversial. In this section, we will describe a repulsive force that is due strictly to
the optical properties of the materials involved. Such a mechanism is responsible
for many phenomena in the non-retarded regime including the surface melting of
solids [82] and the vertical ascent of liquid helium within a container (see, for
example, the discussion in Refs. [20, 29, 83]).

Fig. 8.10 a Measured force
between a gold sphere and a
gold plate immersed in liquid
ethanol is well described by
Lifshitz’s theory. Dots
represent measurements from
51 runs. Circles are average
values from the 51 data sets.
Solid line is Lifshitz’s theory.
b Comparison of the
measured force with different
concentrations of salt shows
no significant difference.
Force data in ethanol with no
added salt (circles), 0.3 mM
NaI (squares), and 30 mM
NaI (triangles). Lifshitz’s
theory for no added salt is
shown as a solid line. Inset
log–log plot of the data
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As was demonstrated by Dzyaloshinskii, Lifshitz, and Pitaevskii in their sem-
inal paper, the sign of the force depends on the dielectric properties of materials
involved [29]. See also the Chap. 2 by Pitaevskii in this volume for related dis-
cussions. Two plates made out of the same material will always attract, regardless
of the choice of the intermediate material (typically a fluid or vacuum); however,
between slabs of different materials (here labeled 1 and 2) the force becomes
repulsive by suitably choosing the intermediate liquid (labeled 3). Thus, by proper
choice of materials, the Casimir–Lifshitz force between slabs 1 and 2 can be either
attractive or repulsive. Specifically, the condition for repulsion is:

e1 [ e3 [ e2; ð8:6Þ

Here the dielectric functions e1; e2 and e3; of the materials are evaluated at
imaginary frequencies. Because they vary with frequency, it is conceivable that
inequality (8.6) may be satisfied for some frequencies and not for others. For
various separations between the slabs, different frequencies will contribute with
different strengths, which can lead to a change in the sign of the force as a function
of separation.

In order to qualitatively understand the origin of these repulsive forces, we
consider the following toy model (see Fig. 8.11 and Ref. [84]) for the microscopic
interaction of the bodies. To first order, the force between the latter is dominated
by the pair-wise summation of the van der Waals forces between all the constituent
molecules. This additivity is a good approximation for rarefied media; however,
the force between two molecules is affected in general by the presence of a third.
Hamaker first used this approach in extending the calculations of London to the
short-range interaction (i.e. the non-retarded van der Waals force) between bodies
and in particular to those immersed in a fluid. By suitably choosing three materials
and their constituent molecules so that their polarizabilities satisfy the inequality
a1 [ a3 [ a2, we find the forces between the individual molecules, which are
proportional to the product of the polarizabilites integrated over all imaginary
frequencies, will obey: F13 [ F12 [ F23, where the subscript ij represents the
interaction between molecules i and j. Thus, it is energetically more favorable for
molecule 3 to be near molecule 1 than it is for molecule 2 to be near molecule 1.
As more molecules of the same species are added to the system, molecules of type
3 will be strongly attracted to those of type 1, resulting in an increased separation
for molecules of type 2 from those of type 1. In this way, Hamaker showed that
repulsive forces between two different materials immersed in a liquid are possible
by calculating the total interaction energy between the bodies and the fluid as the
separation between the bodies is varied. His calculations however were non-rig-
orous because they neglected non-additivity and retardation effects. When these
are included, long-range repulsion between two bodies (materials 1 and 2) sepa-
rated by a third (material 3) is predicted when their relative dielectric functions
obey (8.6). Note that when the fluid has the largest dielectric function, the cohesive
van der Waals interaction within the fluid results in an attraction between its
molecules that is larger than that between the molecules of the fluid and the plate,
which leads to an attractive force between the two plates.

8 Attractive and Repulsive Casimir–Lifshitz Forces 269



Examples of material systems that obey (8.6) are rare but do exist. One of the
earliest triumphs of Lifshitz’s equation was the quantitative explanation of the
thickening of a superfluid helium film on the walls of a container [29, 83]. In that
system, it is energetically more favourable for the liquid to be between the vapour
and the container, and the liquid climbs the wall. One set of materials (solid–
liquid–solid) that obeys inequality (8.6) over a large frequency range is gold,
bromobenzene, and silica (Fig. 8.12).

Using the above-mentioned material combination, we have shown that repul-
sive Casimir–Lifshitz forces are measureable [76]. Raw deflection versus piezo

Fig. 8.11 Toy model of repulsive Casimir–Lifshitz forces. Repulsive forces can exist between
two materials, schematically represented as an ensemble of molecules separated by a third,
typically a liquid, with specific optical properties. a Three individual molecules will all
experience attractive interactions. b For a collection of molecules, with a1 [ a3 [ a2, it is
energetically more favorable for the molecules with the largest polarizabilities (a1 and a3 for this
example) to be close, resulting in an increased separation between molecules of type 1 and type 2.
For a condensed system, the net interaction between material 1 and material 2 is repulsive if the
corresponding dielectric functions satisfy e1 [ e3 [ e2, as consequence of the similar inequality
between polarizabilities. Note that all the a’s and the e’s need to be evaluated at imaginary
frequencies (see text)
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displacement data show that the force is changed from attractive to repulsive by
replacing the gold plate with the silica plate [Fig. 8.13a,c]. The data in
Fig. 8.13a,c were acquired with a piezo speed of 45 nm/s. With the gold plate,

Fig. 8.13 Attractive and repulsive Casimir–Lifshitz force measurements. a Deflection data
showing attractive interactions between a gold sphere and a gold plate. c For the case of the same
gold sphere and a silica plate, deflection data show a repulsive interaction evident during both
approach and retraction. d Measured repulsive force between a gold sphere and a silica plate on a
log–log scale (circles) and calculated force using Lifshitz’s theory (solid line) including
corrections for the measured surface roughness of the sphere and the plate. Triangles are force
data for another gold sphere (nominally of the same diameter)/silica plate pair. b Measured
attractive force on a log–log scale for two gold sphere/plate pairs (circles and squares) and
calculated force using Lifshitz’s theory (solid line) including surface roughness corrections
corresponding to the data represented by the circles

Fig. 8.12 Repulsive quantum electrodynamical forces can exist for two materials separated by a
fluid. a The interaction between material 1 and material 2 immersed in a fluid (material 3) is
repulsive when e1ðinÞ[ e3ðinÞ[ e2ðinÞ, where the eðinÞ’s are the dielectric functions at
imaginary frequency. b The optical properties of gold, bromobenzene, and silica are such that
egoldðinÞ[ ebromobenzeneðinÞ[ esilicaðinÞ and lead to a repulsive force between the gold and silica
surfaces
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the cantilever is bent toward the surface during the approach, which corresponds
to an attractive force between the sphere and plate until contact [Fig. 8.13a].
Once contact is made, the normal force of the plate pushes against the sphere.
Upon retraction, the sphere sticks to the plate for an additional 10 nm, due to
stiction between the two gold surfaces, before losing contact with the surface.
When the silica plate is used, the cantilever is bent away from the surface during
the approach, corresponding to a repulsive interaction [Fig. 8.13c]. During
retraction, the sphere continues to show repulsion. This cannot be a result of the
hydrodynamic force, because the hydrodynamic force is in a direction that
opposes the motion of the sphere and will change sign as the direction is
changed. Similarly, the repulsion observed in Fig. 8.13c cannot be due to charge
trapped on silica; any charge that does exist on the surface will induce an image
charge of opposite sign on the metal sphere and lead to an attractive interaction.
Further experimental details can be found in Ref. [76], and a critical analysis of
previous experiments in the van der Waals regime are discussed in Ref. [84] and
briefly at the end of this section.

The measured forces after calibration show a clear distinction between the
attractive and repulsive regimes when the plate is changed from gold to silica
(Fig. 8.13b,d). The circles correspond to the average force from 50 runs between
the gold sphere and the plate. Histograms of the force data at different distances
show a Gaussian distribution and no evidence of systematic errors.

The experiment is repeated with an additional sphere and plate for both con-
figurations. Figure 8.13b shows the measured force for two different spheres of
nominally the same diameter and two different gold plates. Similar measurements
for two spheres and silica plates are shown in Fig. 8.13d. The solid lines are the
temperature dependent Lifshitz’s theory including surface roughness corrections
for the first sphere/plate pair (circles). Because the second set of measurements are
made with spheres and plates of similar surface roughness and size, the corrections
are of similar magnitude.

Prior to our work, previous experiments have shown evidence for short-range
repulsive forces in the van der Waals regime [85–90]; however, there are many
experimental issues that must be considered that, as our analysis below shows,
were not adequately addressed in many of these experiments. For separations of
a few nm or less, liquid orientation, solvation, and hydration forces become
important and should be considered, which are not an issue at larger separa-
tions. Surface charging effects are important for all distance ranges. In order to
satisfy (8.6), one of the solid materials must have a dielectric function that is
lower than the dielectric function of the intermediate fluid. One common choice
for this solid material is PTFE (polytetrafluoroethylene), which was used in
most experiments [86, 88–90]; however, as was pointed out in Ref. [86],
residual carboxyl groups and other impurities can easily be transferred from the
PTFE to the other surface, which complicates the detection and isolation of the
van der Waals force. In a few experiments, the sign of the force did not agree
with the theoretical calculation, which may be attributed to additional electro-
static force contributions [85, 86]. To avoid this problem, Meurk et al.
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performed experiments with inorganic samples [87]; however, the experimental
configuration consisted of a sharp tip and a plate, which limited the surface
separations to below 2 nm. For the determination of the cantilever force con-
stant, either the Sader method [91] or the Cleveland method [92] was used in
these experiments. The Sader method gives the spring constant of a cantilever
based on the geometry of the cantilever and its resonance frequency, and the
Cleveland method uses the resonance frequency shift of a cantilever upon the
addition of masses to determine the spring constant. These methods lead to an
additional 10–20% error in the determination of the force [93], which could be
greatly reduced if a calibration method is performed that uses a known force for
the calibration [74, 75, 94]. Finally, the determination of the absolute distance
was often found by performing a fit of the experimental data to the presumed
power law of the van der Waals force [86, 88–90]. Thus, the absolute surface
separation could only be determined if one assumed that the measured force
was only the van der Waals force and that it was described precisely by a 1/d2

force law.

8.3.6 Devices Based on Repulsive Casimir Forces

Repulsive Casimir–Lifshitz forces could be of significant interest technologically
as this technique might be used to develop ultra-sensitive force and torque sensors
by counterbalancing gravity to levitate an object immersed in fluid above a surface
without disturbing electric or magnetic interactions. Because the surfaces never
come into direct contact as a result of their mutual repulsion, these objects are free
to rotate or translate relative to each other with virtually no static friction.
Dynamical damping due to viscosity will put limits on how quickly such a device
can respond to changes in its surroundings; however, in principle even the smallest
translations or rotations can be detected on longer time scales. Thus, force and
torque sensors could be developed that surpass those currently used. Figure 8.14
shows an example of a QED levitation device: a nano-compass sensitive to very
small static magnetic fields [95].

Fig. 8.14 QED levitation
device. A repulsive force
develops between the disk
immersed in a fluid and the
plate, which is balanced by
gravity. We show a nano-
compass that could be
developed to mechanically
sense small magnetic fields
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8.4 QED Torque

The effect of the zero-point energy between two optically anisotropic materials, as
shown in Fig. 8.15, has also been considered [54, 55, 95, 97–103]. In this case, the
fluctuating electromagnetic fields have boundary conditions that depend on the
relative orientation of the optical axes of the materials; hence, the zero-point
energy arising from these fields also has an angular dependence. This leads to a
torque that tends to align two of the principal axes of the materials in order to
minimize the system’s energy. We have recently shown that such torques should
indeed be measurable and have suggested experimental configurations to perform
these measurements [102, 103].

In 1972 Parsegian and Weiss derived an expression for the short-range, non-
retarded van der Waals interaction energy between two semi-infinite dielectrically
anisotropic materials immersed within a third material [54]. This result, obtained
by the summation of the electromagnetic surface mode fluctuations, showed that
the interaction energy was inversely proportional to the separation squared and
depended on the angle between the optical axes of the two anisotropic materials. In
1978, Barash independently derived an expression for the interaction energy
between two anisotropic materials using the Helmholtz free energy of the elec-
tromagnetic modes, which included retardation effects [55]. In the non-retarded
limit, Barash’s expression confirmed the inverse square distance dependence of
Parsegian and Weiss and that the torque, in this limit, varies as sinð2hÞ, where h is
the angle between the optical axes of the materials.

The equations that govern the torque in the general case of arbitrary distances
are quite cumbersome and are treated in detail elsewhere [55, 102]. For brevity, we
refer the reader to those papers for a more in-depth analysis and simply state a few
of the relevant results. First, the torque is proportional to the surface area of the
interacting materials and decreases with increasing surface separation. Second it is
found that the QED torque at a given distance varies as:

M ¼ A sinð2hÞ; ð8:7Þ

Fig. 8.15 A QED torque
develops between two
birefringent parallel plates
with in-plane optical axis
when they are placed in close
proximity
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even in the retarded limit, where A is the value of the torque at h ¼ p=4. Fig-
ure 8.16a shows the torque as a function of angle for a 40 lm diameter calcite disk
in vacuum above a barium titanate plate at a distance of d = 100 nm [102]. The
circles correspond to the calculated values of the torque, while the solid line
corresponds to a best fit with (8.7).

Experimentally it is difficult to use large disks in close proximity, because at
such small separations tolerances in the parallelism of two large surfaces (tens of
microns in diameter) are extremely tight; in addition it is difficult to keep them
free of dust and contaminants. If the vacuum is replaced by liquid ethanol, the
torque remains of the same order of magnitude; however, the three materials
(calcite, ethanol, and barium titanate) have dielectric functions that obey (8.6).
This will result in a repulsive Casimir–Lifshitz force which will counterbalance
the weight of the disk and allow it to float at a predetermined distance above the
plate. For a 20 lm thick calcite disk with a diameter of 40 lm above a barium
titanate plate in ethanol, the equilibrium separation was calculated to be
approximately 100 nm with a maximum torque of � 4� 10�19 N m [102], as
shown in Fig. 8.16b.

For the observation of the QED torque, it was suggested in [102] that the disk
be rotated by h ¼ p=4 by means of the transfer of angular momentum of light from
a polarized beam. The laser could then be shuttered, and one would visually
observe the rotation of the disk back to its minimum energy orientation. The
amount of angular momentum transfer determines the initial value of the angle of
rotation. After the laser beam is blocked the disk can rotate either clockwise or
counterclockwise back to the equilibrium position depending on the value of the
initial angle, making it possible to verify the sinð2hÞ dependence of the torque.
Procedures to minimize the effect of charges on the plates and other artifacts were
also discussed [102].

An alternative scheme involving the statistical analysis of Brownian motion
was recently described in [103]. For this situation, the disk size is reduced to the
point that Brownian motion causes translation and rotation. When these rotations
become comparable to the QED rotation, the disk will no longer rotate smoothly to
its minimum energy configuration. Instead the angle between the optical axes will
fluctuate to sample all angles. The probability distribution for the observation of
the angle h between the two optical axes is:

pðhÞ ¼ po exp �UðhÞ=kBT½ �; ð8:8Þ

where UðhÞ is the potential energy of the QED orientation interaction, i.e. the
energy associated with the torque, kBT is the thermal energy, po is a normali-
zation constant such that

R
pðhÞ dh ¼ 1. By observing the angle between the axes

as a function of time, one can deduce the probability distribution via a histogram
of the angular orientations as shown in Fig. 8.17. This is similar to the deter-
mination of the potential energy as a function of distance in Total Internal
Reflection Microscopy (TIRM) experiments for optically trapped spherical par-
ticles [104, 105].
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To observe this effect, one needs to levitate a birefringent disk above a bire-
fringent plate at short-range and be able to detect the orientation of the axes. This
can be done either by using a repulsive Casimir–Lifshitz force or a double layer
repulsion force [38] and video microscopy techniques [106] as described below.

The equilibrium separation occurs when the sum of the forces (Casimir–Lif-
shitz, double layer, and weight) acting on the particle is zero:

X
F ¼ FCLðdÞ þ D� exp½�d=l� � pR2hDqg ¼ 0; ð8:9Þ

where FCLðdÞ is the Casimir–Lifshitz force at distance d, D is a constant related to
the Poisson-Boltzmann potential evaluated at the surface due to charging, l is the
Debye length, R is the radius of the disk, h is the thickness of the disk, Dq is the
density difference between the disk and the solution, and g is the acceleration due to
gravity. Both the Casimir–Lifshitz force and the weight of the disks are set by the
geometry of the system and the materials chosen; however, the double layer force

Fig. 8.16 a Calculated torque as a function of angle between a 40 lm diameter disk made of
calcite and a barium titanate plate separated in vacuum by a distance d = 100 nm. The lines
represent a fit (8.7). b Calculated retarded van der Waals force as a function of plate separation
for this system at a rotation angle of p/4. The arrow represents the distance at which the retarded
van der Waals repulsion is in equilibrium with the weight of the disk
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can be modified by changing the electrolyte concentration. Thus, the floatation
height can be adjusted in this way. Figure 8.17c shows the approximate interaction
energy following from the forces of (8.9), where we have chosen a double layer
interaction leading to a levitation height of approximately 50 nm, with deviations
of a few nm due to thermal energy (kBT), for a lithium niobate disk with radius
R ¼ 1 lm and thickness h ¼ 0:5 lm in an aqueous solution above a calcite plate.

In order to track the motion of the disk above the plate, a video microscopy setup
similar to the one described in [106] is used. The disk’s motion is tracked and
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Fig. 8.17 QED interaction energies and probabilities. a Calculations of the angular dependence
of the QED interaction energy between a 2 lm diameter LiNbO3 disk and a calcite plate.
b Probability of detecting a rotation h. c Energy as a function of separation between the disk and
plate including contributions from the double layer interaction (dominant at close range), the
Casimir–Lifshitz interaction (dominant at longer range) and gravity (negligible). Equilibrium is
obtained around 50 nm
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recorded as is the intensity of the transmitted light. The orientation of the disk is
determined by placing it between a combination of polarizing optical components so
that the intensity of the transmitted light can be related to the orientation of the optical
axis. In order to determine the expected optical intensity at the output as a function of
h, the Jones matrix representation of the optical elements is used to determine the
exiting E-field from which the intensity is calculated [107, 108]. For suitably chosen
optical components (see Ref. [103]), the intensity is proportional to 1� cos 2hð Þ½ �.
From histogram of the intensities, we can determine the preferred angular orien-
tation of the disk and hence the angular QED interaction energy and the torque.

Figure 8.18 shows the typical configuration for such experiments. The thermal
fluctuations of the particles are recorded via a CCD camera attached to an upright
microscope. The particles’ centers can be determined and tracked by the method of
[106] with a standard deviation of less than 1/10 pixel. Figure 8.18 shows both the
tracking and intensity fluctuations recorded for a spherical non-birefringent par-
ticle. For non-birefringent particles, the intensity fluctuations are due to scattering
by the particle as it undergoes Brownian motion. In order to study the QED torque,
small birefringent disks should be used. Such disks have been fabricated using a
combination of crystal ion slicing [109], mechanical polishing, and focused ion
beam (FIB) sculpting as shown in Fig. 8.19. To date no experiments have been
performed with birefringent particles; however, this detection scheme should be
suitable for such QED torque experiments.

8.5 Future Directions

A number of other interesting QED phenomena await experimental investigation:

Fig. 8.18 Schematic of the
Brownian motion detection
scheme showing data for a
non-birefringent spherical
particle. Light is recorded via
a CCD and digitized to allow
for tracking and
determination of intensity
fluctuations
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8.5.1 Phase Transitions and the Casimir Effect

Recently the influence of Casimir energy on the critical field of a superconducting
film has been theoretically investigated, and it was shown that it might be possible
to directly measure the variation of Casimir energy that accompanies the super-
conducting transition [110]. Another interesting experiment would be to use as one
of the surfaces a vanadium oxide film. This material switches from insulator to
metal above a temperature of *60 C and such a transition with the attendant
significant change in reflectivity is expected to lead to an observable increase of
the Casimir force above that temperature. Recent measurements on another
material (Ag-In-Sb-Te) that can undergo a phase transition has shown a modifi-
cation of the Casimir force by up to 20% when samples prepared from either
crystalline or amorphous phases were used [111].

8.5.2 Self Assembly and Sorting via the Casimir–Lifshitz Force

The ability to modify the Casimir–Lifshitz force opens the door to the possibility
of engineering the potential energy landscape for particles based purely on their
dielectric functions [84]. With the appropriate choice of fluid, repulsive forces will
occur for asymmetric configurations (e.g. Au-SiO2 across bromobenzene), while
attractive forces will occur for symmetric configurations (e.g. Au-Au or SiO2-SiO2

across bromobenzene). By patterning a plate with these two different materials,

Fig. 8.19 LiNbO3 disks
fabricated by crystal ion
slicing and focused ion beam
sculpting
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one can study both non-additivity effects discussed above and the assembly and
sorting of particles based solely on their dielectric functions. Similar sorting and
aggregation effects have been observed in the thermodynamic Casimir effect,
which is related to classical density fluctuations [112]. Other recent proposals
include the ability to tune chemical reactions [113] and the self-assembly of
colloidal scale devices [114, 115] based, at least partially, on manipulating the
Casimir–Lifshitz forces.

8.5.3 Casimir Friction

There has been an interesting prediction that dissipative retarded van der Waals
forces can arise between surfaces in relative motion due to the exchange of virtual
photons which couple to acoustic phonons in the material [116]. Similar dissipa-
tive Casimir forces can arise between metals; here virtual photons would couple to
particle-hole excitations in the metal [117]. This would lead to changes with
position of the Q of suitable MEMS oscillators, such as the ones described in Sect.
8.2.2.

J. B. Pendry has considered another type of vacuum friction when two perfectly
smooth featureless surfaces at T = 0, defined only by their respective dielectric
functions, separated by a finite distance, move parallel to each other [118]. He
found large frictional effects comparable to everyday frictional forces provided
that the materials have resistivities of the order of 1 MX and that the surfaces are
in close proximity. The friction depends solely on the reflection coefficients of the
surfaces for electromagnetic waves, and its detailed behavior with shear velocity
and separation is controlled by the dispersion of the reflectivity with frequency.
There exists a potentially rich variety of vacuum friction effects, as discussed in a
recent article [119]. See also the discussion in the Chap. 13 of Dalvit et al. and
Henkel et al. Chap. 11 of this volume.

8.5.4 Dynamic Casimir Effect

It is also interesting to point out that the nonuniform relative acceleration of the
metal and the sphere will lead, at least in principle, in the Casimir oscillator of
Sect. 8.2.2 to an additional damping mechanism associated with the parametric
down-conversion of vibrational quanta into pairs of photons, a QED effect asso-
ciated with the nonlinear properties of vacuum. This phenomenon, which was
investigated theoretically by Lambrecht, Jackel, and Reynaud in the context of a
vibrating parallel plate capacitor [120], is an example of the so called dynamical
Casimir effect, i.e. the nonthermal radiation emitted by uncharged metal or
dielectric bodies in a state of nonuniform acceleration [121] (see also the Chap. 13
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of Dalvit et al. of this volume). The extraction of photons from vacuum in a cavity
vibrating at twice the fundamental frequency of the cavity can be viewed as a
parametric ‘‘vacuum squeezing’’ phenomenon. Physically, photons are created as a
result of the time dependent boundary conditions of cavity modes, which produce
electromagnetic fields. The observation of this effect would require a very high
cavity Q (*108–109) typical of superconductive cavities and GHz oscillations
frequencies [120]. Such frequencies have been achieved in NEMS [122].

It is worth pointing out that radiation can be extracted from QED fluctuations
also from a beam of neutral molecules interacting with a grating. In this case
coherent radiation can be generated as result of the time dependent modulation of
the Casimir-Polder-van der Waals force between the molecules and the grating.
Radiation in the far infrared region should be attainable with beam densities of
1017 cm-3 [123].

8.6 Conclusions

In conclusion following a comprehensive state-of-the-art overview of the Casimir
effect from its original proposal, we have discussed our recent and ongoing
research in this promising field.

Note: A review has recently appeared [124] discussing the physics of the Casimir effect in
microstructured geometries.
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Chapter 9
Casimir Force in Micro and Nano Electro
Mechanical Systems

Ricardo Decca, Vladimir Aksyuk and Daniel López

Abstract The last 10 years have seen the emergence of micro and nano
mechanical force sensors capable of measuring the Casimir interaction with great
accuracy and precision. These measurements have proved fundamental to further
develop the understanding of vacuum fluctuations in the presence of boundary
conditions. These micromechanical sensors have also allowed to quantify the
influence of materials properties, sample geometry and unwanted interactions over
the measurement of the Casimir force. In this review we describe the benefits of
using micro-mechanical sensors to detect the Casimir interaction, we summarize
the most recent experimental results and we suggest potential optomechanical
experiments that would allow measuring this force in regimes that are currently
unreachable.

9.1 Introduction

During the last 60 years, there have been considerable studies trying to understand
the forces acting between electrically neutral objects in vacuum, particularly, the
van der Waals and Casimir forces. The experimental characterization and physical
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interpretation of these interactions is still generating discussions and stimulating
the development of increasingly sophisticated experiments.

In the late 1940s, Hendrik Casimir [1] demonstrated theoretically that there is
an attractive force between two electrically neutral, perfectly reflecting, and
parallel conducting plates placed in vacuum. This attractive force is known as the
Casimir force and is considered a quantum phenomenon since in classical elec-
trodynamics the force acting between neutral planes is strictly zero. Casimir
compared the quantum fluctuations of the electromagnetic field existing inside and
outside these ideal parallel plates. The plates impose well-defined boundary
conditions to the fluctuating electromagnetic modes existing between them and, as
a consequence, the zero-point energy of this system is a function of the separation
between plates (see Fig. 9.1). The difference between zero-point energy inside and
outside the plates is responsible for the attractive force between plates. This force
has the same origin as the van der Waals force but acts at larger separations
between bodies and, as a consequence, relativistic retardation effects need to be
considered.

According to Casimir’s original calculation, the attractive force per unit area,
i.e., the pressure between the plates, can be expressed as:

PðdÞ ¼ � p2�hc

240 d4
ð9:1Þ

where d is the separation between plates, c is the speed of light and �h is Planck’s
constant divided by 2p. The calculation of the Casimir’s pressure for dielectric
surfaces at finite temperature was obtained by Lifshitz [2] in 1956. Several
excellent reviews describing the theoretical aspects of these calculations and
alternative derivations are listed in the reference section [3–15].

The simple Casimir formulation of the pressure acting between two neutral
metallic plates represented one of the first indications that the zero-point energy of
the electromagnetic field could be experimentally detected. The physical reality of
the Casimir effect was a very controversial subject when proposed for first time. In
his biography [16], Casimir described the unsuccessful discussions he had with
Wolfgang Pauli trying to convince him that this force could have observable
effects. Since then, there have been so many experimental confirmations of this
force that its effects are now routinely considered when studying objects at sep-
arations below 1 lm.

The first experiment intended to measure the Casimir force was performed in
1958 by Sparnaay [17] using parallel plates. While this experiment was not very
successful due to the difficulties associated with moving parallel plates with high-
precision, it provided the first indication that surface roughness needs to be
reduced and surface charges must be removed. Blokland and Overbeek did the first
convincing measurement of the Casimir force in 1978 [18]. By using a sphere in
front of a metallic plate, to eliminate the problems associated with the parallelism
of the plates, they measured the force with an experimental accuracy of 50%. The
experiment done by S. Lamoreaux in 1997 [19] is considered the first high-
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precision measurement of the Casimir force. He used a torsional pendulum in the
sphere-plate configuration and obtained a 5% agreement between theory and
experiment. Several variations of these experiments have been performed in the
following years producing compelling evidence that the Casimir effect can be
observed in various experimental conditions. A common feature of these experi-
ments is that they involved macroscopic objects: They measured the Casimir force
among objects having typical dimensions of several cm and for separations
between bodies of the order of microns.

The first measurement of the Casimir force between microscopic objects sep-
arated by hundreds of nanometers or less, was performed by Mohideen in 1998
[20] using an atomic force microscope (AFM). In this experiment, a gold-coated
200 lm diameter sphere was attached to the tip of an AFM, which was used to
measure the Casimir force between the sphere and a metalized plate. Similar
experiments using AFM techniques are very popular today since they allow the
measurement of this force at distances as short as 20 nm [21].

The use of micro-mechanical devices as a novel technique for characterization
of this force was introduced by Ho Bun Chan and collaborators at Bell Labora-
tories in 2001 [22]. In this technique, a micro-mechanical torsional oscillator is
used to detect the Casimir force induced by a metallic sphere approaching the
oscillator. Furthermore, this experiment demonstrated that the Casimir force could
be used to modify the mechanical state of microscopic devices introducing a novel
mechanism for actuation at the micro- and nanoscale. Casimir force detectors
based on micro-mechanical devices are currently the most sensitive devices to
characterize this force [23].

Figure 9.2 summarizes the typical dimensions of the objects used in Casimir
experiments performed in the last decades. The area labeled ‘‘torsion balance’’
represents the macroscopic experiments performed with objects having tens of cm
in size. The use of MEMS (Micro Electro Mechanical Systems) and AFM (Atomic
Force Microscopy) technology, what we call microscopic experiments, allowed

Fig. 9.1 Schematic
representation of the photonic
modes confined between two
metallic surfaces. The
Casimir force between these
two metallic surfaces arises
due to the dependence of the
energy spectrum of the
confined electromagnetic
modes on the separation
between the surfaces
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precise determination of the Casimir force down to 20 nm distances by involving
objects with sizes below 1 mm.

In this review, we will describe the fundamentals of micro and nano electro
mechanical devices (NEMS), we will explain the advantages they provide when
used to detect the Casimir force and we will examine the most recent results
obtained with this technology. We conclude this review with suggestions to
improve the precision of micro/nano mechanical sensors to enable the investiga-
tion of the Casimir force in regimes that are currently not accessible.

9.2 Micro and Nano Electro Mechanical Systems

Mechanical devices with typical dimensions in the order of tens of microns, known
as MEMS (Micro Electro Mechanical Systems), are already having a pervasive
presence in science and technology [24]. They are widely employed as sensors and
actuators due to their fast response time, enhanced sensitivity to external pertur-
bations and the possibility of high-density integration of multiple elements into a
single chip. By further reducing the size of these MEMS devices, we enter the
world of NEMS (Nano Electro Mechanical Systems). In this size regime, the
resonance frequency of these nano-devices becomes extremely large (up to GHz)
and their mechanical quality factor remains very high (Q � 106). This

Fig. 9.2 Comparison of the characteristic object’s size and interaction range (gap) of
experiments performed in the last decades to measure the Casimir force between bodies
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combination implies exceptionally high force sensitivities, ultra-low power con-
sumption and access to non-linear response with small actuation forces [25].
Furthermore, NEMS devices allow integration of even larger number of nano
mechanical devices into extremely small areas.

As force detectors, MEMS and NEMS have been successfully used in a
diversity of applications since they can routinely detect piconewtons (10-12 N)
and, under special experimental conditions, they can detect forces as small as
zeptonewtons (10-21 N). MEMS/NEMS based force sensors have been used to
measure forces between individual biomolecules [26], to explore quantum effects
in mechanical objects [27], to detect single spins by magnetic resonance force
microscopy [28] and to study force fluctuations between closely spaced bodies
[29]. As we will see in the following section, MEMS devices have also enabled the
most precise measurement of the Casimir interaction between metallic objects in
vacuum [23].

This long list of examples is also an indication of how vulnerable these devices
are to local forces and to what extent local forces are to be considered in the design
of MEMS/NEMS devices. In the particular case of the Casimir force, its effects
become important when the distance between neutral objects is in the order of
hundreds of nanometers. Fabrication of mechanical devices with features of this
size is becoming common nowadays. Recently, high-density arrays of NEMS
mirrors with critical dimensions of about 100 nm have been fabricated to modulate
deep ultraviolet radiation (DUV) for maskless lithography applications [30]. These
NEMS mirrors are separated by 100 nm gaps and they are supported at the center
by 100 nm wide elastic springs providing the mechanical restoring forces (see
Fig. 9.3). In the absence of electrostatic actuation, the Casimir force is the dom-
inant interaction between these miniature objects and it needs to be taken into
account in their design.

In the following section, we will describe the use of MEMS devices as force
sensors for unambiguous detection of the Casimir interaction between metallic
objects.

Fig. 9.3 Ultra dense array of NEMS mirrors for maskless lithography: (a) schematic represen-
tation of the array showing the mirror and spring layers and SEM images of the fabricated devices
showing the mirrors array (b) and springs (c). Each mirror is 3 9 3 lm, the gap between them is
around 100 nm. In (c), the spring’s width and spacing is also � 100 nm

9 Casimir Force in Electro Mechanical Systems 291



9.3 Experimental Aspects on the Determination
of the Casimir Interaction

A MEMS torsional oscillator is at the core of the experimental setup developed to
measure the Casimir interaction between metallic bodies. The attractive force
between two bodies can be measured by determining the changes induced in a
MEMS oscillator due the Casimir interaction. These changes could be associated
with either an induced displacement of the oscillator or a change of its natural
resonance frequency due to the presence of the interaction between the two bodies.
Beyond the requirement of a precise determination of the interaction itself, the
separation between the two bodies also needs to be measured accurately and
precisely. See also the Chap. 8 by Capasso et al. in this volume for additional
discussions of MEMS based Casimir force measurements.

Our experimental setup has allowed us to obtain the most sensitive experi-
mental determination to date of the Casimir interaction between similar and dis-
similar metals. The current system consists of a MEMS torsional oscillator and a
metal-coated sphere and is capable of extremely precise control of their relative
position (see Fig. 9.4a). The MEMS oscillator and the sphere are independently
coated with the materials under consideration. By approaching a coated sphere to
one side of the coated torsional oscillator the attractive Casimir force induces a
torque that rotates the MEMS device about the fixed supports. This rotation is
detected by measuring the angular deflection of the plate as a function of the plate-
sphere separation. Furthermore, these MEMS oscillators can be designed to con-
currently have high resonance frequencies and large quality factor Q producing
important improvements in sensitivity. This experimental setup can be operated in

Fig. 9.4 Schematic of the two configurations used for the experimental setup. a Sphere attached
to the optical fiber. All the relevant dimensions are included. zmetal is the separation between the
bodies, zo is the distance between the end of the fiber and the end of the sphere, b is the lever arm,
h is the angular deviation of the oscillator, and zg (not shown in the graph) is the distance between
the top of the oscillator and the reference plate. b Plate attached to the optical fiber assembly. All
the dimensions have the same meaning, except for zo which represents the distance between the
end of the fiber and the bottom of the plate
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both static and dynamic regimes. In the static regime the sphere is maintained at a
fixed vertical position and the Casimir force is measured directly. In the dynamic
regime, the vertical separation between the sphere and the plate is changed har-
monically with time, leading to an improvement of the sensitivity.

The MEMS is mounted onto a piezo-driven xyz stage which, in turn, is mounted
on a micrometer controlled xy stage. This combination allows positioning the
metal-coated sphere over the metal-coated MEMS plate. The separation zi between
the sphere and the substrate is controlled by the vertical axis of the xyz stage. A
two color fiber interferometer-based closed-loop system is used to measure and
control zi.

Measurements of the Casimir interaction have been performed in two dif-
ferent configurations. In the first one, Fig. 9.4a, the polysilicon oscillator plate
was coated with a thin adhesion layer (�10 nm of either Cr or Ti) and sub-
sequently a thick (�200 nm) Au layer was evaporated. Similarly, the
R �150 mm sapphire sphere was coated with �10 nm Cr and �200 nm Au
was thermally evaporated on it. The Au coating in both the plate and the sphere
is thick enough to ensure that the Casimir interaction can be regarded as arising
from solid Au bodies, which was checked by calculating the Casimir interaction
between bodies for a multilayer system [31] and, more importantly, by mea-
suring the interaction using a sphere with a thinner (�180 nm) Au layer. No
significant differences between both experimental runs were observed. The Au-
coated sphere was glued with conductive silver epoxy to the sides of an Al-
coated optical fiber that is part of an optical interferometer. In the second setup,
Fig. 9.4b, the position of the sphere and the plate has been interchanged. This
new configuration permits easier exchange of samples without modification of
the fragile MEMS sensor.

When confronted with the measurement of small forces, the isolation of the
detecting device from external vibrations is of supreme importance. Hence, using a
MEMS torsional oscillator is preferable, since torsional oscillators are less sen-
sitive to vibrations that couple with the motion of their center of mass. Further
decoupling from external vibrations is achieved by mounting the rigid sample
setup by soft springs to a vacuum chamber, which in turn is on top of a passive
damping air table. The incorporation of magnetic damping, along all axes of
motion, between the sample setup and the vacuum chamber reducing vibrations to
a peak-to-peak amplitude Dzpp \ 0.02 nm for frequencies above 50 Hz. The small
dimensions of the oscillator aids in improving its intrinsic quality factor and
sensitivity [32]. The high quality Q of the oscillator, however, cannot be fully
utilized in the presence of a dissipative medium. The effects of energy damping of
the surrounding air are minimized by working in a vacuum. The vacuum is
achieved by pumping the system down to 1.3 � 10-5 Pa (10-7 Torr) with an oil
free diaphragm-turbomolecular pump system. While measurements are performed,
pumping in the sample chamber is stopped and the pump is physically discon-
nected from the system. A low pressure (never higher than 0.3 � 10-3 Pa (10-5

Torr) is maintained by a chemical pump made of a cold (*77 K) activated carbon
trap located inside the vacuum chamber.
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In both experimental situations the optical fiber can be moved relatively to the
oscillator assembly by means of a five-axis micrometer driven mechanical stage,
and a xyz piezo-driven stage.

The separation dependent attractive force F(zmetal) between the sphere and the
plate will cause the oscillator to rotate under the influence of the torque

s ¼ bFðzmetalÞ ¼ ktorsionh ð9:2Þ

where ktorsion is the torsional spring constant for the oscillator. Since the torsional
angles are small, they are proportional to the change in capacitance between the
underlying electrodes and the oscillator. Consequently,

h / DC ¼ Cright � Cleft ð9:3Þ

where Cright (Cleft) is the capacitance between the right (left) electrode and the
plate (Fig. 9.4). Hence the force between the two metallic surfaces separated by a
distance zmetal is F zmetalð Þ ¼ kDC; where k is a proportionality constant that needs
to be determined by calibration.

Alternatively, the force sensitivity of the oscillator can be enhanced by per-
forming a dynamical measurement [22, 33, 34]. In this approach, the separation
between the sphere and the MEMS oscillator plate is varied as Dz ¼ AcosðxrestÞ,
where xres is the resonant angular frequency of the oscillator, and A is the
amplitude of motion. The linearized solution for the oscillatory motion, valid for
A � zmetal, yields [22, 33]

x2
res ¼ x2

0 1� b2

Ix2
0

oF

oz

� �
; ð9:4Þ

Where, for Q � 1, xo �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ktorsion=I

p
is the natural resonance frequency of the

oscillator, I is its moment of inertia. It has been shown [35] that there is an optimal
value of A which is a function of the separation. If A is too small, then the error in
the determination of xres increases due to thermal motion. If A is too large, then
non-linearities can not be neglected. In general, A is selected to be between 2 nm
and 5 nm to satisfy the aforementioned constrains. The resonance frequency can
also be measured by recording the thermal vibration of the oscillator at temper-
ature T, but it was found that driving the system with a sinusoidal signal and a
phase-lock loop [33] provided a more stable signal.

Unlike the static regime where forces are measured, in the dynamic regime the
force gradient qF/qz is measured by observing the change in the resonant fre-
quency as the sphere-plate separation changes. When F is given by the Casimir
interaction, the gradient of the interaction within the applicability range of the
proximity force, is found to be

�oFc

oz
¼ 2pRPcðzmetalÞ ð9:5Þ
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where PC zð Þ ¼ FC= Sð Þ is the force per unit area between two infinite metallic
plates at the same separation zmetal as the sphere and the plate. In (5) FC has been
used to denote the Casimir interaction.

9.4 Calibrations

The characterization of the system and the determination of the calibration con-
stants are performed by applying a known electrostatic force between the sphere
and the MEMS plate, i.e., by applying a known potential difference, Vb, between
them. In this case, the electrostatic force can be approximated by the force between
a sphere and an infinite plate [36]:

Feðzmetal;VÞ ¼ �2pe0ðVb � V0Þ2
X1
n¼1

cothðuÞ � n cothðnuÞ
sinhðnuÞ ffi NðzmetalÞ Vb � V0ð Þ2

ð9:6Þ

NðzmetalÞ ¼ �2pe0

X7

m¼0

Bmtm�1 ð9:7Þ

In (9.6) and (9.7) eo is the permittivity of free space, Vo is a residual potential
difference between the plate and the sphere, u ¼ 1þ t; t ¼ zmetal=R, and Bm are
fitting coefficients. While the full expression (9.6) is exact, the series is slowly
convergent, and it is easier to use the approximation developed in Refs. [37, 38].
The values of the Bm parameters are 0.5, -1.18260, 22.2375, -571.366, 9592.45,
-90200.5, 383084, and -300357. Using these values, errors smaller than 1 part in
105 are obtained. In (9.6) it has been assumed that the contact potential Vo is
independent of separation. If this is not the case a more involved analysis where
the Vo(zmetal) dependence is taken into account would be needed [39]. See also the
Chap. 7 by Lamoreaux in this volume for additional discussions of distance-
dependent contact potentials.

To complete the electrostatic calibration (as well as to perform the measure-
ment of the separation dependence of the Casimir interaction) it is necessary to
determine zmetal. This variable can be determined precisely by using the following
geometrical relationship (see Fig. 9.4a):

zmetal ¼ zi � z0 � zg � bh ð9:8Þ

In (9.8), zg is the distance between the top of the MEMS oscillator and the
substrate. This distance is measured interferometrically with an error of
dzg � 0.1 nm. The distance b is measured optically (db � 2 lm), h is determined
through the change in capacitance between the oscillator and the underlying
electrodes (dh � 10-7 rad) and zi is measured with a two color interferometer
where the light reflected at the end of the fiber is combined with the light reflected
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at the reference platform. The two color interferometer, which operates with a low
coherence source (superluminescent diode, coherence length �20 lm) at 1310 nm
and a stabilized laser at 1550 nm, is a fiber version of the one developed in Ref.
[40]. The distance zo is not known a priori and the electrostatic calibration is also
used to determine it [41].

The electrostatic calibration is done at zmetal large enough such that the Casimir
interaction does not have a measurable contribution. For a fixed (Vb – Vo), zi is
measured. With the best estimate for zo (optically measured with an error
of �2 lm), an iterative method is then used. As a function of measured separa-
tions zi, the change in capacitance between electrodes and the plate is found [34]
and from here the corresponding values of h are obtained. This is repeated for up to
150 different (Vb – Vo). With the measured values of h and the estimated value for
zo, a set of zmetal values is obtained from (8). Using

h ¼ b

ktorsion
Nðzmetal þ dz0ÞðVb � V0Þ2 ð9:9Þ

ktorsion/b and dzo are used as fitting parameters. The improved value of zo is used
in (9.7) and the procedure is repeated until no further changes are obtained. The
sensitivity of this approach is shown in Fig. 9.5. When all the errors are combined,
it is found that zmetal can be measured to within dzmetal = 0.6 nm [35].

The electrostatic interaction is also used to obtain b2/I. Typically for the first
configuration (sphere on the fiber) b2/I � (1.2500 ± 0.0005) mg-1. When the
sphere is attached to the oscillator the values of b2/I are reduced by up to an order
of magnitude (and vary significantly depending where the sphere is attached).

Once the electrostatic force has been used to calibrate the system, selecting
Vb = Vo makes the effect of the electrostatic interaction undetectable in our
experiment. This is accomplished by applying a potential difference between the

(b)(a)

Fig. 9.5 a Absolute value of the electrostatic force as a function of separation determined using
the procedure described in the text and (9.6). b Difference between the measured values and (9.6)
for when either the best zo (open circles) or zo

* = zo ? 1.5 nm (full circles) are used in (9.6). Data
shown was obtained for (Vb – Vo) = 322.0 mV
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sphere and the plate Vb = VDC ? dVcos(xt), where the amplitude of the oscilla-
tory component dV � 1 mV. The response of the oscillator is then proportional to
oFe=oVDC, and Vo is obtained when the derivative of the force equals 0, as shown
in Fig. 9.6.

9.5 Determination of the Casimir Interaction

Upon completion of the calibration procedure, the Casimir interaction can be
determined. The electrical potential between the sphere and the plate is adjusted as
to obtain a null Fe, Vb = hVo i , where h Vo i is the average potential for zmetal in
the 160 nm to 5000 nm range, found as described in the previous section. The
position of the fiber is then changed in �2 nm increments, as measured by the two
color interferometer. The actual zmetal is obtained using (9.8) with previous
determination of the corresponding h. The resonance frequency of the oscillator is
measured, and by means of (9.5), the equivalent Casimir pressure PC(zmetal) is
obtained. The procedure is repeated for many runs (where the measurements are
performed at the same set of zmetal within the experimental error) and the average
of the different runs is reported as PC(zmetal). When taking into account the errors
in the determination of xres, dxres � 5 mHz, and R, dR � 0.3 lm as determined
in a scanning electron microscope, the total error in PC can be determined [35, 42].
Figure 9.7 shows the determination of PC obtained by both experimental setups,
with the sphere attached either to the fiber or to the sensor. Also in Fig. 9.7 the
difference between both determinations is plotted. It is worth mentioning that these
experiments were done with a separation of four years, in different vacuum
chambers, using different experimental setups, and, more important, with Au
deposited by different techniques. The data reported in Fig. 9.7 represent the most

Fig. 9.6 Magnitude of the
derivative of the force dF/
dVDC as a function of VDC.
The plot was obtained at
zmetal = 3.5 lm when
VDC = Vo. Data do not fall in
a straight line due to the
increase of the electrostatic
force (and h) when |VDC – Vo|
increases
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precise measurements of the Casimir interaction up to date. The error bars rep-
resent the 95% confidence level in both the separation and pressure determination.

The characterization of the frequency dependence of the dielectric function
e(x) of the material is required in order to calculate the Casimir force between real
metals. Figure 9.8 shows our experimental measurements of the real, e0, and
imaginary e00 parts of the dielectric function of the Au layer deposited on a Si
single crystal. The measurements were performed between 196 nm and 820 nm.
While there are differences between the values measured on our samples and the
ones reported on standard reference books [43], it is important to notice that these
differences are too small to produce any significant difference in [44] the calcu-
lation of the Casimir interaction [31]. See also the Chap. 10 by van Zwol et al. in
this volume for additional discussions of characterization of optical properties of
surfaces in Casimir force measurements.

In fact, the calculation of the Casimir pressure at finite temperatures for real
samples is given by the Lifshitz formula [2, 45]

PCðzmetalÞ ¼ �
kBT

p

X1
l¼0

0 Z1

0

k?dk?ql� ½r�2
k ðnl; k?Þe2qlz � 1��1þ

n
½r�2
? ðnl; k?Þe2qlz � 1��1

o

ð9:10Þ

where k\ is the wave vector component in the plane of the plates, q2
l ¼

k2
? þ n2

l =c2, nl ¼ ðkBTlÞh�1 are the Matsubara frequencies, and rk and r\ are the

(a) (b)

Fig. 9.7 a Absolute value of the measured Casimir pressure as a function of separation for the
setup from Fig. 4a, sample from Ref. [42] (open circles), and Fig 9.4b, sample electrodeposited
on a Si single crystal, Ref. [47] (closed circles). Both data sets are indistinguishable at this scale.
b Difference between the data sets in a. The difference was obtained at the separations measured
in the newest sample. The pressure at these separations for the older sample was determined by
linear interpolation. Error bars represent the 95% confidence level in both the separation and
pressure determinations
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reflection coefficients for two independent polarization states computed for
imaginary frequencies xl = i nl. The prime on the summation in (9.10) refers to
the inclusion of a factor � for the term with l = 0.

As described in the Refs. [35, 42], the roughness of the sample also needs to be
taken into account. By using the atomic force microscope image of the surfaces the
fraction of the sample at different absolute separations are determined. The
Casimir pressure between the two surfaces is obtained as the weighted average
(weighted by the fraction of the sample at a given separation) of the Casimir
pressure between samples of finite conductivity and at finite temperatures as given
by (9.10). See also the Chap. 10 by van Zwol et al. in this volume for additional
discussions of surface roughness in Casimir force measurements. When the
dielectric function is used in (9.10), different results are obtained when the zero
order term of the Matsubara series is computed using a Drude model or a plasma
model. A detailed discussion of the comparisons can be found in Refs. [35, 42, 46].
Here it suffices to include the obtained results as a function of separation, as shown
in Fig. 9.9. While the plasma model shows an excellent agreement with the data,
no agreement within the experimental error is obtained when the Drude model is
used. This remarkable result is still waiting for explanation, and has given rise to
numerous problems and controversies in the interpretation of the data.

9.6 Current Discussions in the Precise Determination
of the Casimir Force

As aforementioned, the discrepancies between experiments and the Drude model
have resulted in numerous controversies. It is difficult to understand why while the
low frequency transport of Au is very well described with a Drude model, the
effects of dissipation on the conduction electrons are absent when performing

Fig. 9.8 Filled circles show (a) ellipsometrically measured values of e’ and (b) e’’ as a function
of wavelength. Tabulated data from Ref. [43] are displayed as open circles
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Casimir pressure measurements. Among the arguments brought forward to explain
these discrepancies, it has been hypothesized that differences in the Au layer could
account for them. While this has not been completely ruled out, the data showed in
Fig. 9.9 is a strong indication that this is not the case. Furthermore the effect of
having a poor Au metallic coating would be to decrease the strength of the Casimir
interaction, making the difference with the observed data more pronounced. In a
recent experiment [47] we intended to provide an answer to this problem by
measuring the Casimir pressure at different temperatures, �2, 4.2, 77 and 300 K.
The idea here was to find out if as the temperature was reduced the measured
Casimir pressure remained constant (thus supporting the plasma model) or chan-
ged (as it would be the result expected when dissipation is reduced). Unfortu-
nately, while the average of PC(zmetal) remains the same at all temperatures, the
data shows a significantly larger amount of noise at low temperatures precluding
the exclusion of either model. Other possibilities that have been mentioned is the
existence of a systematic effect associated with either an improper electrostatic
calibration, or the presence of patch potentials that provide an extra attractive
interaction.

Additionally, there has been some controversy regarding the electrostatic cal-
ibration of the experimental setup. Particularly, the dependence of Vo between
metallic layers has been significantly studied as a function of position, separation,
and time. Differently from what other groups have found [39], in our samples Vo

was observed to be independent of time, position or separation, as shown in
Fig. 9.10, in agreement with what has been reported on Ref. [38]. Alternatively,
there is an experimental report indicating that an electrostatic calibration free of
the problems can be obtained even when Vo changes with separation [48]. While
the results obtained by our group are in good agreement with theoretical expec-
tations, the reasons behind the different observations in different configurations

(a) (b)

Fig. 9.9 Measured and calculated Casimir pressure as a function of separation, for the closest
(a) and furthest separations (b). The crosses represent the 95% confidence levels in the measured
values. The dark gray band is the calculation (with the error represented by the thickness of the
band) using the Drude model. The light gray is the same when the plasma model is used, see
Ref. [46]
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require further study. This dependence could be associated with patch potentials,
which would yield a separation dependence of Vo and a residual electrostatic force
that cannot be counterbalanced [49, 50]. In Ref. [35] it was calculated that the
effect of patch potentials would be undetectable if their extent were to
be �300 nm (estimated Au grain size in the samples). If, on the other hand, the

(a)

(b)

(c)

Fig. 9.10 Measurement of
the residual potential Vo using
the method shown in Fig. 3 as
a function of (a) separation
(b) time, and (c) lateral
position
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patches are very large, much larger than the effective interacting area, then their
effect also would be cancelled by the effect of the applied Vb.

Finally, to shed more light on the effect of Vo on the interaction measurements,
an experiment was performed where the applied Vb did not completely cancel Vo,
leading to an effective ‘‘residual potential.’’ The Casimir pressure was determined
for this situation and when the optimal Vb was applied, and their difference plotted
as a function of separation, as shown in Fig. 9.11. It is worth mentioning that
firstly, a ‘‘residual potential’’ larger than the error in the average of Vo is needed to
observe any effect in the interaction. Secondly, the interaction associated with the
residual potential is well fitted by (9.6) with a leading 1/zmetal

2 term at small
separations. It appears from the totality of electrostatic measurements performed
that the effects of residual potentials can be counterbalanced in the precision
measurements of the Casimir interaction.

9.7 Future Directions: Improved Micromechanical
Force Sensors

Investigations of the Casimir interaction stand to benefit considerably from the
ongoing improvement in the precision micromechanical sensors and the associated
position and force measurement techniques. The precision of the current genera-
tion of micromechanical sensors is significantly limited by the combination of the
thermal noise of the mechanical sensor itself and the readout noise of the elec-
trostatic or optical detector used in the MEMS or AFM based sensors respectively.
In the case of MEMS sensors in particular, the Casimir force measurement pre-
cision has benefitted considerably from the stabilization of the measurement

Fig. 9.11 Difference
between the determined
Casimir pressure when the
optimal Vb has been used and
the determined pressure when
(Vb – Vo) = 5 mV has been
used. The difference is well
fitted by the electrostatic
interaction. The error bars are
obtained at the 95%
confidence level
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apparatus enabling very long acquisition times to improve the signal to noise ratio
by signal averaging. It is however still desirable to improve the force and dis-
placement measurement precision of these devices. This would enable the
investigation of Casimir force in the regimes that were not previously easily
accessible.

In the regime of large separation distance the Casimir force and its gradient are
very weak and better force sensitivity would lead to an immediate improvement in
that regime. In the regime of small separation distances the current limitation is the
stability of the sensor against the destabilizing effect of the Casimir force gradient —
negative ‘‘Casimir spring’’ —leading to inability to maintain controlled constant
separation. This can be counteracted by oscillating the mechanical sensor with large
amplitude and essentially sampling the Casimir force at small separations only over
a short portion of the oscillation cycle. This however leads to stringent oscillation
amplitude control and measurement requirement, as well as a nontrivial relationship
between the Casimir potential, oscillation amplitude and the measured oscillation
frequency shift. A more straightforward way to access this regime is to increase the
stiffness of the mechanical sensor to maintain its stability. However combining the
stiffer micromechanical sensor (lower mechanical gain) with the decreased oscil-
lation amplitude needed to maintain a simple linear measurement leads to a sig-
nificant reduction in the signal to noise that need to be compensated for.

Finally, there is a significant recent interest in measuring the forces acting on
objects that are spatially finite and have micron or even submicron dimensions, in
order to observe size and shape dependence of the Casimir forces as well as
potentially spatially inhomogeneous electrostatic forces due to so-called ‘‘patch
potentials’’. To realize such measurements, again, dramatic improvements in
sensor precision are required.

In considering the force measurement by a mechanical sensor we need to
essentially consider two transduction or ‘‘amplification’’ stages. The first one is
mechanical, whereby a mechanical force is transduced to a displacement of a
linear mechanical oscillator. It is characterized by stiffness (gain), effective mass
or resonance frequency, and mechanical loss (with the corresponding thermal
noise). In the second stage the mechanical displacement is transduced into an
electrical signal, typically through either an electrostatic or an optical measure-
ment. This stage can also be characterized by its gain and the input-referred noise.
In an ideal case the gains are such that the noise of the first stage is dominant at all
frequencies, but this is typically not the case.

In the first stage the mechanical loss essentially couples the oscillator to a thermal
bath and introduces a mechanical thermal noise. The input-referred force noise
spectrum of this Langevin force is white, independent of the frequency of the
measurement. Consequently if the mechanical thermal noise of the transducer is the
dominant noise source, the signal-to-noise (SNR) ratio of the measurement is also
uniform and independent of frequency. The SNR is however inversely proportional
to the square root of the loss, that is proportional to the square root of the mechanical
quality factor Q. Note that when we measure the force at frequencies below the
mechanical resonance frequency, the gain of the sensor is independent of Q, while
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the mechanical force and displacement noises decrease as Q1/2. On the other hand,
when we measure on resonance, the gain increases as Q, the force noise decreases as
Q1/2 and the corresponding displacement noise increases as Q1/2. Thus the SNR
improves with Q equally for off-resonance and on resonance measurement when
thermal mechanical noise is dominant. When this is the case, SNR can only be
improved by either increasing the force signal being measured, or by decreasing the
equivalent temperature of the mechanical mode of the transducer during the mea-
surement (see below).

In reality, however, there are technical and other noises, often referred to as 1/f
noise, which can increase the noise floor at low frequencies above the thermal
noise. In addition, in most practical situations the gain of the mechanical trans-
ducer off-resonance is too low, resulting in electrical or optical noise of the second
stage dominating everywhere except the narrow window around the mechanical
resonance frequency. To take advantage of the high mechanical gain and high
SNR around the mechanical resonance, the input force should be applied at the
appropriate resonance frequency. With a force that is constant in time but that is a
strong function of the separation gap this is achieved by modulating the gap. While
the gap can be modulated by an external actuator, more often this is achieved by
exciting the mechanical vibration of the transducer itself by applying an external
force to it in parallel with the force to be measured. For example this force could
be an electrostatic force, or an inertial force applied by vibrating the whole
transducer in space.

Typically the measured transducer position is used in a phase locked loop to
apply the external excitation force exactly at 90-degree phase shift to the measured
transducer displacement while maintaining the constant transducer vibration
amplitude. This insures that the transducer always vibrates on resonance. In turn
the interaction force now has a component that is AC modulated by the oscillating
transducer gap. For a potential force that is only a function of the gap, this AC
component is in phase with the mechanical motion and results in the shift in the
resonance frequency of the transducer, which is then being detected. For a small
oscillation amplitude the measurement is particularly easy to interpret, as the
frequency shift is proportional to the gradient of the force of interest at a given
separation, see (9.4). However it should be noted that the AC force component that
is being generated and measured in this way is almost always smaller than the total
DC force at that gap. The SNR of this measurement is proportional to the vibration
amplitude for small amplitudes.

In both DC and AC measurements the gain of the mechanical sensor is
inversely proportional to the sensor stiffness. However, making the sensors softer
leads to earlier onset of instability for small separations. Moreover, as long as the
sensor effective mass is limited by the need for extended sensor position readout
areas, such as the case for electrostatic readout, decreasing the sensor stiffness
leads to lowering the resonance frequency. While dynamic measurement band-
width is not a concern where a DC force is measured and the averaging time is
seconds or even minutes, staying above the low frequency technical noise and
maintaining high Q of the sensor prevents further reduction of the stiffness. The
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issues of the measurement bandwidth indeed come to the foreground as one
considers scanning probe sensors where the force is measured as a function of
location.

We can thus conclude that the DC and off-resonance force measurement SNR is
currently limited directly by the mechanical displacement readout, while for on
resonance measurements with high Q transducers in vacuum thermal mechanical
noise and the gap modulation amplitude determine the SNR at room temperature.
Furthermore, decreasing the physical size of the position readout areas without
compromising the readout precision would be required for more robust and higher
bandwidth sensors.

While electrostatic readout has been widely used for MEMS sensors due to its
relative simplicity of implementation in a MEMS transducer, it has significant
limitations. It does not scale well with decreasing sensor size, as the capacitance
derived signal is proportional to the area of the sensor. Even when the stray
capacitance of the cables connecting the sensor is eliminated, the input capacitance
of the readout transistor, together with the electronic Johnson noise, limits this
readout scheme.

Optical readout, however, has been shown to achieve much lower mechanical
displacement noise levels, while requiring the minimum interaction areas only of
the order of the wavelength of light used. The fundamental noise limit is in this
case imposed by the quantum optical shot noise, and is generally independent of
temperature as the energy of a photon in the visible to near-IR range of the
spectrum is much larger than kBT, where kB is the Boltzmann’s constant.

To realize the full benefit of the optical readout scheme one needs to use an
optical interferometer that has as high finesse as possible and is modulated as
strongly as possible by the mechanical motion of the sensor. In one recent example
of a comparably low finesse (�20) cavity using a gold-coated micromechanical
cantilever as one of the mirrors, the mechanical noise level of the order of 10-15

m/Hz1/2 was achieved [51] with incident optical power of 1mW and the readout
spot on the cantilever of only 3 lm in size. In another remarkable example using a
high finesse cavity (�30000), spot size of �60 lm and incident power of 1.5 mW
the noise level of 4 9 10-19 m/Hz1/2 was achieved [52]. In both cases the optical
cavities were of the order 1 mm in size, external to the mechanical devices, and in
the high finesse case the mechanical device was fairly large,
1 mm 9 1 mm 9 60 lm, and included a high reflectivity coating.

The next step in the transducer evolution is to integrate the high finesse optical
interferometer on the same chip, optomechanically coupled to the mechanical
transducer for optical readout (and even possibly excitation with an all-optical
force). The optical resonators with optical Q of over 105 and as small as a few
microns in size can be realized on chip via appropriate microfabrication processes.
Planar structures such as photonic crystals and disk and ring resonators are some of
the possible candidates, combining compactness and high mode confinement with
excellent Qs and the ability to integrate with connecting waveguides as well as
mechanical sensors.
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Such an integrated device coupling a MEMS transducer with an optical inter-
ferometer has been recently realized [53–55]. The concept is shown schematically
in Fig. 9.12. A high optical Q 10 lm diameter Si microdisk resonator is
mechanically fixed to a substrate. The light can be coupled in and out of the
resonator via a fixed microfabricated Si waveguide (WG) on a side of the reso-
nator. A movable dielectric membrane (blue), made from low stress silicon nitride
(LSN), is fabricated above the resonator. The membrane is attached to a MEMS
transducer such as an electrostatic actuator and is capable of mechanical motion in
the vertical direction. The optical mode in the microdisk is evanescently coupled
to the membrane and as the membrane moves toward and away from the micro-
disk, never touching it mechanically, the motion significantly shifts the resonance
frequency of the mode. While this is still work in progress, given the observed
parameters of the current devices we estimate the shot noise limit of the
mechanical motion readout to be below 10-15 m/Hz1/2. With the evanescent field
coupling approach the optical and mechanical devices are fabricated side by side
and can be optimized essentially separately. No compromises are required such as
integrating complicated and heavy coatings on micromechanical devices. Another
advantage is the potential for completely fiber-pigtailed simplicity, without need
for maintaining external optical alignment.

Fig. 9.12 Schematic (a and b) and Scanning Electron Microscope images (c and d) of an
integrated opto-mechanical transducer. Membrane is microfabricated from low stress silicon
nitride (LSN). Actuator, microdisk optical resonator (ldisk), and waveguide (WG) are single
crystal silicon
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This type of device would in principle allow one to exploit various effects
observed in cavity optomechanical systems [56]. One particular possibility is to
excite the resonant vibration of the mechanical mode with an optical force by blue-
detuning the optical excitation from resonance and use this as an alternative to the
phase locked loop of the frequency sensing scheme described above. An even
more exciting possibility is to use the position sensing for cooling the mechanical
mode. This can be done either through feedback, or even directly by red-detuning
the excitation light. For example, cooling factor of 60 from room temperature was
achieved by using feedback approach [52]. While the cooling feedback is turned
on, the effective mechanical Q is dramatically reduced, however as soon as the
cooling is completed and the feedback is turned off, the Q is high and the thermal
noise in sensor displacement is still low, while it takes the time of order Q/fres for
the mechanical mode to thermalize back to room temperature. If the cooling rate
with the feedback turned on (in principle limited just by the opto-mechanical
position sensing bandwidth and noise) can be made much faster than 1/Q, the
sensor can in principle be operated at the effective temperature much lower than
room temperature.
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Chapter 10
Characterization of Optical Properties
and Surface Roughness Profiles: The
Casimir Force Between Real Materials

P. J. van Zwol, V. B. Svetovoy and G. Palasantzas

Abstract The Lifshitz theory provides a method to calculate the Casimir force
between two flat plates if the frequency dependent dielectric function of the plates
is known. In reality any plate is rough and its optical properties are known only to
some degree. For high precision experiments the plates must be carefully char-
acterized otherwise the experimental result cannot be compared with the theory or
with other experiments. In this chapter we explain why optical properties of
interacting materials are important for the Casimir force, how they can be mea-
sured, and how one can calculate the force using these properties. The surface
roughness can be characterized, for example, with the atomic force microscope
images. We introduce the main characteristics of a rough surface that can be
extracted from these images, and explain how one can use them to calculate the
roughness correction to the force. At small separations this correction becomes
large as our experiments show. Finally we discuss the distance upon contact
separating two rough surfaces, and explain the importance of this parameter for
determination of the absolute separation between bodies.
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10.1 Introduction

The Casimir force [1] between two perfectly reflecting metals does not depend on
the material properties. This is a rather rough approximation as the Lifshitz theory
demonstrates [2–4] (see Chap. 2 by Pitaevskii in this volume). In this theory
material dependence of the force enters via the dielectric functions of the mate-
rials. Because the Casimir–Lifshitz force originates from fluctuations of the
electromagnetic field, it is related to the absorption in the materials via the fluc-
tuation dissipation theorem. The dissipation in the material at a frequency x is
proportional to the imaginary part of the dielectric function eðxÞ ¼ e0ðxÞ þ
ie00ðxÞ: Thus, to predict the force one has to know the dielectric properties of the
materials.

In most of the experiments where the Casimir force was measured (see reviews
[5, 6] and the Chap. 7 by Lamoreaux in this volume) the bodies were covered with
conducting films but the optical properties of these films have never been mea-
sured. It is commonly accepted that these properties can be taken from tabulated
data in handbooks [7, 8]. Moreover, for conducting materials one has to know also
the Drude parameters, which are necessary to extrapolate the data to low fre-
quencies [9]. This might still be a possible way to estimate the force, but it is
unacceptable for calculations with controlled precision. The reason is very simple
[10–13]: optical properties of deposited films depend on the method of prepara-
tion, and can differ substantially from sample to sample.

Analysis of existing optical data for Au [14] revealed appreciable variation of
the force in dependence on the optical data used for calculations. Additionally, we
measured our gold films using ellipsomety in a wide range of wavelengths
0:14�33 lm [15], and found significant variation of optical properties for samples
prepared at different conditions. Considerable dependence of the force on the
precise dielectric functions of the involved materials was also stressed for the
system solid–liquid–solid [16].

The Lifshitz formula can be applied to two parallel plates separated by a gap d.
In reality each plate is rough and the formula cannot be applied directly. When the
separation of the plates is much larger than their root–mean–square (rms)
roughness w one can calculate correction to the force due to roughness using the
perturbation theory. But even in this case the problem is far from trivial [17–19].
The roughness correction can be easily calculated only if one can apply the
Proximity Force Approximation (PFA) [20]. Application of this approximation to
the surface profile is justified when this profile changes slowly in comparison with
the distance between bodies. The typical lateral size of a rough body is given by
the correlation length n: Then the condition of applicability of PFA is n� d: This
is very restrictive condition since, for example, for thermally evaporated metallic
films the typical correlation length is n� 50 nm.

The roughness of the interacting bodies restricts the minimal separation d0

between the bodies. This distance (distance upon contact) has a special signifi-
cance for adhesion, which under dry conditions is mainly due to Casimir/van der
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Waals forces across an extensive noncontact area [21]. It is important for micro
(nano) electro mechanical systems (MEMS) because stiction due to adhesion is the
major failure mode in MEMS [22]. Furthermore, the distance upon contact plays
an important role in contact mechanics, is very significant for heat transfer, contact
resistivity, lubrication, and sealing.

Naively one could estimate this distance as the sum of the rms roughnesses of
body 1 and 2, d0 � w1 þ w2 [23], however, the actual minimal separation is
considerably larger. This is because d0 is determined by the highest asperities
rather then those with the rms height. An empirical rule [24] for gold films gives
d0 � 3:7� ðw1 þ w2Þ for the contact area of � 1lm2: The actual value of d0 is a
function of the size of the contact area L. This is because for larger area the
probability to find a very high peak on the surface is larger.

Scale dependence (dependence on the size L) is also important for the Casimir
force in the noncontact regime. In this case there is an uncertainty in the separation
ddðLÞ; which depends on the scale L. The reason for this uncertainty is the local
variation of the zero levels, which defines the mathematical (average) surfaces of
the bodies. This uncertainty depends on the roughness of interacting bodies and
disappears in the limit L!1:

In this paper we explain how one can collect the information about optical
properties of the materials, which is necessary for the calculation of the Casimir–
Lifshitz force. It is also discussed how the optical spectra of different materials
manifest themselves in the force. We introduce the main characteristics of rough
surfaces and discuss how they are related to the calculation of the roughness
correction to the force. Scale dependence of the distance upon contact is discussed,
and we explain significance of this dependence for the precise measurements of the
force.

10.2 Optical Properties of Materials and the Casimir Force

Most Casimir force measurements were performed between metals [5, 6, 25–27]
either e-beam evaporated or plasma sputtered on substrates. For such metallic
films the grains are rather small in the order of tens of nanometers, and the amount
of defects and voids is large [28]. The force measured between silicon single
crystal and gold coated sphere [29] simplify situation only partly: the optical
properties of the Si-crystal are well defined but properties of Au coating are not
known well.

A detailed literature survey performed by Pirozhenko et al. [14] revealed sig-
nificant scatter in the dielectric data of gold films collected by different groups.
The measurement errors were not large and could not explain the data scattering. It
was concluded that scattering of the data for gold films could lead to uncertainty in
the calculated force up to 8% at separations around 100 nm. Most of the optical
data for metals do not extend beyond the wavelength of 14 lm in the infrared
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range [30, 31]. Thus, it would be important to explore more the infrared regime
and compare modern measured optical properties of samples used in force mea-
surements with the old data. Moreover, mid and far infrared data are very
important for the force prediction (see Sect. 10.2.2.2). This was accomplished by
Svetovoy et al. [15] where ellipsometry from the far infrared (IR) to near ultra-
violet (UV) was used over the wavelength range 140 nm�33 lm to obtain the
frequency dependent dielectric functions for gold films prepared in different
conditions. Analysis of different literature sources investigating the dielectric
functions of a number of dielectrics such as silica and some liquids was performed
by van Zwol et al. [16]. Situations where the data scattering can change even the
qualitative behavior of the force (from attractive to repulsive) were indicated.

10.2.1 Dielectric Function in the Casimir Force

In this section we discuss how the dielectric functions of materials enter the
Lifshitz theory and how these functions can be found experimentally.

10.2.1.1 The Force

Let us start the discussion from the Lifshitz formula [4] between two parallel
plates separated by a gap d. It has the following form

FðT; dÞ ¼ kT

p

X1
n¼0

0
Z1

0

dqqj0

X
m¼s;p

rm
1rm

2e�2j0d

1� rm
1rm

2e�2j0d
; ð10:1Þ

where ‘‘prime’’ at the sign of sum means that the n ¼ 0 term must be taken with
the weight 1/2, the wave vector in the gap is K ¼ ðq; j0Þ with the z-component j0

defined below. The index ‘‘0’’ is related with the gap. Here rm
1;2 are the reflection

coefficients of the inner surfaces of the plates (index 1 or 2) for two different
polarizations: m ¼ s or transverse electric (TE) polarization, and m ¼ p or trans-
verse magnetic (TM) polarization. Specific of the Lifshitz formula in the form
(10.1) is that it is defined for a discrete set of imaginary frequencies called the
Matsubara frequencies

xn ¼ ifn ¼ i
2pkT

�h
n; n ¼ 0; 1; 2; . . .; ð10:2Þ

where T is the temperature of the system and n is the summation index and k is the
Boltzmann constant.

In practice the interacting bodies are some substrates covered with one or a few
layers of working materials. If the top layer can be considered as a bulk layer then
the reflection coefficients for body i are given by simple Fresnel formulas [32]:
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rs
i ¼

j0 � ji

j0 þ ji
; rp

i ¼
eiðifÞj0 � e0ðifÞji

eiðifÞj0 þ e0ðifÞji
; ð10:3Þ

where

j0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðifÞ

f2

c2
þ q2

s
; ji ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eiðifÞ

f2

c2
þ q2

s
: ð10:4Þ

For multilayered bodies these formulas can be easily generalized (in relation
with the dispersive forces see Ref. [33]). Only the reflection coefficients depend on
the dielectric functions of the plate materials; the function e0ðifÞ of the gap
material enters additionally in j0:

At small separations the thermal dependence of the force is very weak and in
many cases can be neglected. Because important imaginary frequencies are around
the so called characteristic frequency fc ¼ c=2d; then the relative thermal cor-
rection can be estimated as kT=�hfc: For room temperature T ¼ 300 K and sepa-
rations smaller than 100 nm the correction will be smaller than 3%. If one can
neglect this correction then in the Lifshitz formula f can be considered as a
continuous variable and the sum in (10.1) is changed by the integral according to
the rule:

kT

p

X1
n¼0

0 ! �h

2p2

Z1

0

df: ð10:5Þ

The material function eðifÞ (we suppress the indexes for a while) cannot be
measured directly but can be expressed via the observable function e00ðxÞ with the
help of the Kramers–Kronig (KK) relation [32]:

eðifÞ ¼ 1þ 2
p

Z1

0

dx
xe00ðxÞ
x2 þ f2: ð10:6Þ

The knowledge of eðifÞ is of critical importance for the force calculations.
Equation (10.6) demonstrates the main practical problem. To find the function
eðifÞ for f� fc in general one has to know the physical function e00ðxÞ in a wide
range of real frequencies, which not necessarily coincides with x� fc: This
property of the Casimir force was stressed in Ref. [12] and then was demonstrated
experimentally [34–36]. It will be discussed below on specific examples.

10.2.1.2 The Optical Data

The optical properties of materials are described by two measurable quantities: the
index of refraction nðkÞ and the extinction coefficient kðkÞ; which both depend on
the wavelength of the electromagnetic field k: Combined together they define the
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complex index of refraction ~nðkÞ ¼ nðkÞ þ ikðkÞ: The real part defines the phase
velocity in a medium v ¼ c=n where c is the speed of light. The imaginary part
tells us how much light is absorbed when it travels through the medium. The
dielectric response of a material for the UV (�hx > 5 eV), IR (0:01��1 eV) and
MicroWave (MW) or TeraHertz range (10�4 � 10�2 eV), is related to electronic
polarization resonances, atomic polarization resonances (in case of metals this is a
gas of quasi free electrons), and dipole relaxation, respectively.

The complex dielectric function eðxÞ ¼ e0ðxÞ þ ie00ðxÞ and the complex index
of refraction are related as eðxÞ ¼ ~n2ðxÞ; which is equivalent to the following
equations:

e0 ¼ n2 � k2; e00 ¼ 2nk: ð10:7Þ

In many cases only the absorbance is measured for a given material. In this case
the refraction index can be found from the KK relation at real frequencies:

e0ðxÞ ¼ 1þ 2
p

P

Z1

0

dx
xe00ðxÞ

x2 � x2
; ð10:8Þ

where P means the principal part of the integral.
Kramers–Kronig relations originating from causality have a very general

character. They are useful in dealing with experimental data, but one should be
careful since in most cases dielectric data are available over limited frequency
intervals. As a result specific assumptions must be made about the form of the
dielectric data outside of measurement intervals, or the data should be combined
with other (tabulated) experimental data before performing the KK integrals.

A powerful method to collect optical data simultaneously for both e0 and e00 is
ellipsomery. This is a non destructive technique where one measures an intensity
ratio between incoming and reflected light and the change of the polarization state.
Ellipsometry is less affected by intensity instabilities of the light source or
atmospheric absorption. Because the ratio is measured no reference measurement
is necessary. Another advantage is that both real and imaginary parts of the
dielectric function can be extracted without the necessity to perform a Kramers–
Kronig analysis. The ellipsometry measures two parameters W and D; which can
be related to the ratio of complex Fresnel reflection coefficients for p- and
s-polarized light [37, 38]

q ¼ rp

rs
¼ tan WeiD; ð10:9Þ

where rp;s are the reflection coefficients of the investigated surface, and the angles
W and D are the raw data collected in a measurement as functions of the wave-
length k: When the films are completely opaque (bulk material), then the reflection
coefficients are related to the dielectric function as follows
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rp ¼
eh i cos#�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eh i � sin2 #

q

eh i cos#þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eh i � sin2 #

q ; rs ¼
cos#�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eh i � sin2 #

q

cos#þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eh i � sin2 #

q ; ð10:10Þ

where # is the angle of incidence and eh i ¼ eðkÞh i is the ‘‘pseudo’’ dielectric
function of the films. The term ‘‘pseudo’’ is used here since the films may not be
completely isotropic or uniform; they are rough, and may contain absorbed layers
of different origin because they have been exposed to air. If this is the case then the
dielectric function extracted from the raw data will be influenced by these factors.
The dielectric function is connected with the ellipsometric parameter q for an
isotropic and uniform solid as

e ¼ sin2 # 1þ tan2 #
1� q
1þ q

� �2
" #

: ð10:11Þ

As it was stated before the spectral range of our measured data is from 137 nm
to 33 lm: Even longer wavelengths have to be explored to predict the force
between metals without using the extrapolation. Ellipsometry in the terahertz
range 0.1–8 THz (wavelengths 38�3000 lm) is difficult due to lack of intense
sources in that range, and these systems are still in development [39]. Typically
synchrotron radiation is used as a source deeming these measurements very
expensive. Nonetheless for gold films it would be extremely interesting to have
dielectric data in this regime.

Dielectric data obtained by ellipsometry or absorption measurements [40] in the
far UV regime are also rare. The most obvious reason for this is that these mea-
surements are expensive because high energy photons must be produced, again at
synchrotrons [41]. Furthermore, ellipsometry in this range becomes complicated as
polarizing materials become non transparent. For this range a few ellipsometry
setups exist around the world covering the range 5–90 eV (wavelengths
12–200 nm) [41]. The vacuum UV (VUV) and extreme UV (XUV) parts may not
be very important for metals but for low permittivity dielectrics such as all liquids,
and, for example, silica or teflon, there is a major absorption band in the range
5–100 eV (see Fig. 10.6). It is precisely this band that dominates in the calcula-
tions of the Casimir force for these materials. It is very unfortunate that precisely
for this band dielectric data are lacking for most substances except for a few well
know cases as, for example, water.

10.2.2 Gold Films

In this section we discuss optical characterization of our gold films prepared in
different conditions using ellipsometers. Then we discuss the dielectric function
at imaginary frequencies for Au films and for metals in general stressing the
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importance of very low real frequencies for precise evaluation of eðifÞ at
f� fc� 1 eV (separations around 100 nm). Finally we describe variation in the
Casimir force if different samples would be used for the force measurements.

10.2.2.1 eðxÞ for Au Films

Let us have now a closer look at the dielectric functions of our gold films [15] used
for the force measurements in Refs. [24, 42]. For optical characterization we have
prepared five films by electron beam evaporation. Three of these films of different
thicknesses 100, 200 and 400 nm were prepared within the same evaporation
system on Si with 10 nm titanium sublayer and were not annealed. Different
evaporation system was used to prepare two other films. These films were 120 nm
thick. One film was deposited on mica and was extensively annealed. The other
one was deposited on Si with chromium sublayer and was not annealed.

The AFM scans of the 100 nm film and the annealed 120 nm film on mica are
shown in Fig. 10.1. In the same figure are shown also the gold covered sphere and
1600 nm film, which where not used in optical characterization. One can see that the
annealed sample is atomically smooth over various length scales with atomic steps
and terraces visible. Nevertheless, the local trenches of 5 nm deep are still present.

Fig. 10.1 Flattened roughness scans (up to 4000� 4000 pixels) of gold surfaces where the
highlighted areas are magnified. The scale bars can be applied only to the large images. a 100 nm
Au on Si. b Au coated polysterene sphere (first plasma sputtered then 100 nm Au evaporated.
c 1600 nm Au on Si. d very high quality 120 nm Au on mica, annealed for a few hours and
slowly cooled down

318 P. J. van Zwol et al.



Optical characterization of the films was performed by J. A. Woollam Co., Inc.
[43]. Vacuum ultraviolet variable angle spectroscopic ellipsometer (VASE) was
used in the spectral range 137–1698 nm. In the spectral range 1:9�32:8 lm the
infrared variable angle spectroscopic ellipsometer (IR-VASE) was used for two
incidence angles of 65 and 75�: The roughness and possible absorbed layer on the
film surface can have some significance in the visible and ultraviolet ranges but not
in the infrared, where the absorption on free electrons of metals is very large.
Moreover, the effect of roughness is expected to be small since for all films the rms
roughness is much smaller than the smallest wavelength 137 nm: Because the
infrared domain is the most important for the Casimir force between metals, we
will consider eðkÞh i extracted from the raw data as a good approximation for the
dielectric function of a given gold film.

Figure 10.2a shows the experimental results for e00ðxÞ for three of five inves-
tigated samples. Around the interband transition (minimum of the the curves) the
smallest absorption is observed for the sample 5 (annealed on mica) indicating the
smallest number of defects in this sample [28]. On the contrary, this sample shows
the largest je0ðxÞj in the infrared as one can see in Fig. 10.2b. An important
conclusion that can be drawn from our measurements is the sample dependence of
the dielectric function. The sample dependence can be partly attributed to different
volumes of voids in films as was proposed by Aspnes et al. [28]. The values of e
and their dispersion for different samples are in good correspondence with old
measurements [30, 31]. The log-log scale is not very convenient for having an
impression of this dependence. We present in Table 10.1 the values of e for all five
samples at chosen wavelengths k ¼ 1; 5; 10 lm: One can see that the real part of e
varies very significantly from sample to sample.

One could object that the real part of e does not play role for eðifÞ and only
variation of e00ðxÞ from sample to sample is important. However, both e00ðxÞ and
e0ðxÞ are important for precise determination of the Drude parameters. Let us
discuss now how one can extract these parameters from the data.

All metals have finite conductivity. It means that at low frequencies x! 0 the
dielectric function behaves as eðxÞ ! 4pr=x; where r is the material
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Fig. 10.2 a Measured e00 as a function of frequency x: b The same for je0j: For clearness the
results are presented only for three samples 2, 3, and 5
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conductivity. It has to be stressed that this behavior is a direct consequence of the
Ohm’s law and, therefore, it has a fundamental character. Because the dielectric
function has a pole at x! 0; the low frequencies will give a considerable con-
tribution to eðifÞ even if f is high (for example, in visible part of the spectrum) as
one can see from (10.6).

Usually it is assumed that at low frequencies the dielectric functions of good
metals follow the Drude model:

eðxÞ ¼ 1�
x2

p

x xþ icð Þ; ð10:12Þ

where xp is the plasma frequency and c is the relaxation frequency of a given
metal. When x! 0 we reproduce the 1=x behavior with the conductivity
r ¼ x2

p=4pc: For good metals such as Au, Ag, Cu, Al typical values of the Drude

parameters are xp� 1016 rad/s and c� 1014 rad/s:
Separating real and imaginary parts in (10.12) one finds for e0 and e00

e0ðxÞ ¼ 1�
x2

p

x2 þ c2
; e00ðxÞ ¼

x2
pc

x x2 þ c2ð Þ: ð10:13Þ

These equations can be applied below the interband transition x\2:45 eV
(k[ 0:5 lm) [44], but this transition is not sharp and one has to do analysis at
lower frequencies. Practically (10.13) can be applied at wavelengths k[ 2 lm that
coincides with the range of the infrared ellipsometer. The simplest way to find the
Drude parameters is to fit the experimental data for e0 and e00 with both equations
(10.13). Alternatively to find the Drude parameters one can use the functions nðxÞ
and kðxÞ and their Drude behavior, which follows from the relation eðxÞ ¼ ~n2ðxÞ:
This approach uses actually the same data but weights noise differently.

Completely different but more complicated approach is based on the KK
relations (10.8) (see Refs. [14, 15] for details). In this case one uses measured
e00ðxÞ extrapolated to low frequencies according to the Drude model and extrap-
olated to high frequencies as A=x3; where A is a constant. In this way we will get
e00ðxÞ at all frequencies. Using then (10.8) we can predict e0ðxÞ: Comparing the
prediction with the measured function we can determine the Drude parameters.
Similar procedure can be done for nðxÞ and kðxÞ:

Table 10.1 Dielectric function for different samples at fixed wavelengths k ¼ 1; 5; 10 lm

Sample k ¼ 1 lm k ¼ 5 lm k ¼ 10 lm

1, 400 nm/Si �29:7þ i2:1 �805:9þ i185:4 �2605:1þ i1096:3
2, 200 nm/Si �31:9þ i2:3 �855:9þ i195:8 �2778:6þ i1212:0
3, 100 nm/Si �39:1þ i2:9 �1025:2þ i264:8 �3349:0þ i1574:8
4, 120 nm/Si �43:8þ i2:6 �1166:9þ i213:9 �3957:2þ i1500:1
5, 120 nm/mica �40:7þ i1:7 �1120:2þ i178:1 �4085:4þ i1440:3
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All methods for determination of the Drude parameters give reasonably close
values of both parameters. We cannot give preference to any specific method.
Instead, we average the values of the parameters determined by different methods,
and define the rms error of this averaging as uncertainty in the parameter value.
The averaged parameters and rms errors are given in the Table 10.2. We included
in this table also the correlation lengths n and the rms roughness w for the sample
roughness profiles. One can see the xp and n correlate with each other.1 This
correlation has sense because n describes the average size of the crystallites in the
film; the larger the crystallites the smaller number of the defects has the film and,
therefore, the larger value of the plasma frequency is realized.

One can see the quality of the Drude fit in Fig. 10.3 for samples 3 and 5. The fit
is practically perfect for high quality sample 5, but there are some deviations for
sample 3 at short wavelengths especially visible for e00: More detailed analysis [15]
revealed presence of a broad absorption peak of unknown nature around k ¼
10 lm: The magnitude of this absorption is the largest for poor quality samples 1
and 2.

Table 10.2 Drude parameters c; xp and roughness parameters, the correlation length n and rms
roughness w, for all five measured samples

1, 400 nm/Si 2, 200 nm/Si 3, 100 nm/Si 4, 120 nm/Si 5, 120 nm/mica

c (meV) 40:5	 2:1 49:5	 4:4 49:0	 2:1 35:7	 5:1 37:1	 1:9
xp (eV) 6:82	 0:08 6:83	 0:15 7:84	 0:07 8:00	 0:16 8:38	 0:08
n (nm) 22 26 32 70 200
w (nm) 4.7 2.6 1.5 1.5 0.8
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Fig. 10.3 The infrared data as functions of the wavelength k for e0 and e00 (solid lines) and the
best Drude fits (dashed lines) for two gold films. a Shows the data for annealed sample 5 and
b shows the same for unannealed sample 3

1 This correlation was not noted in [15] and stressed here for the first time.
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10.2.2.2 eðifÞ for Metals

Any method of optical characterization has a minimal accessible frequency xcut

(cut-off frequency). At x [ xcut one can measure the dielectric function but at
lower frequencies x\xcut one has to make an assumption on the behavior of
eðxÞ; i. e. extrapolate to low frequencies. In KK relation (10.6) one can separate
two intervals: x\xcut; where e00ðxÞ has to be extrapolated and x [ xcut; where
e00ðxÞ is measured. Then we can present eðifÞ as

eðifÞ ¼ 1þ ecutðifÞ þ eexperðifÞ;

ecutðifÞ ¼
2
p

Zxcut

0

dx
xe00ðxÞ
x2 þ f2; eexperðifÞ ¼

2
p

Z1

xcut

dx
xe00ðxÞ
x2 þ f2:

ð10:14Þ

Of course, at very high frequencies we also do not know e00ðxÞ but, for metals high
frequencies are not very important. For this reason we include the high frequency
contribution to eexperðifÞ:

We can estimate now the contribution of ecutðifÞ to eðifÞ: For that we assume
the Drude behavior at x\xcut with the parameters xp ¼ 9:0 eV and c ¼ 35 meV
[9]. At higher frequencies x [ xcut we take the data from the handbook [7], for
which the cut-off frequency is xcut ¼ 0:125 eV: These extrapolation and data were
used for interpretation of most experiments, where the Casimir force was mea-
sured. In Fig. 10.4a the solid curve is the ratio ecutðifÞ=eðifÞ calculated with these
data. One can see that at f ¼ 1 eV (d� 100 nm) the contribution to eðifÞ from the
frequency range x\xcut is 75%. It means, for example, that if we change the
Drude parameters, three fourths of eðifÞ will be sensitive to this change and only
one forth will be defined by the measured optical data. Therefore, the extrapolation
procedure becomes very important for reliable prediction of eðifÞ:
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Fig. 10.4 a Relative contribution ecutðifÞ=eðifÞ to the dielectric function of gold at imaginary
frequencies originating from the extrapolated region x\xcut (see explanations in the text). b The
dielectric functions at imaginary frequencies for samples 2, 3, and 5; the thick curve marked as 0
corresponds to an ‘‘ideal sample’’ with the plasma frequency of single crystal
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The Drude parameters can vary from sample to sample due to different density
of defects. The plasma frequency is related to the density of quasi-free electrons N
as x2

p ¼ 4pNe2=m
e ; where for gold m
e � me is the effective mass of electron. The
value xp ¼ 9:0 eV is the maximal value of this parameter, which corresponds to N
in a single crystal Au. In this way xp was estimated in Ref. [9]. All deposited films
have smaller values of xp as one can see from Table 10.2 because the density of
the films is smaller than that for the single crystal material. Precise values of the
Drude parameters are extremely important for evaluation of eðifÞ and finally for
calculation of the force.

The dielectric function eðifÞ becomes less dependent on the Drude parameters if
the cut-off frequency is smaller. For example, our optical data [15] were collected
up to minimal frequency xcut ¼ 38 meV that is about four times smaller than in the
handbook data. The dashed curve in Fig. 10.4a shows the ratio ecut=e calculated for
our sample 3 with the Drude parameters xp ¼ 7:84 eV and c ¼ 49 meV: Now the
relative contribution of ecutðifÞ at f ¼ 1 eV is 37%. It is much smaller than for
handbook data, but still dependence on the precise Drude parameters is important.
Let us imagine now that we have been able to measure the dielectric response of
the material for the same sample 3 from [15] to frequencies as low as 1 THz: In
this case the cut-off frequency is xcut ¼ 4 meV and the relative contribution of the
extrapolated region ecut=e is shown in Fig. 10.4a by the dash-dotted line. Now this
contribution is only 5% at f ¼ 1 eV:

The dielectric functions eiðifÞ; where i ¼ 1; 2; ::; 5 is the number of the sample,
were calculated using the Drude parameters from Table 10.2. As a reference curve
we use e0ðifÞ; which was evaluated with the parameters xp ¼ 9:0 eV and c ¼
35 meV in the range x\0:125 eV and at higher frequencies the handbook data [7]
were used. The results are shown in Fig. 10.4b. As was expected the maximal
dielectric function is e0ðifÞ; which corresponds in the Drude range to a perfect
single crystal. Even for the best sample 5 (annealed film on mica) the dielectric
function is 15% smaller than e0ðifÞ at f ¼ 1 eV: For samples 1 and 2 the deviations
are as large as 40%.

10.2.2.3 The Force Between Au Films

It is convenient to calculate not the force itself but the so called reduction factor
g; which is defined as the ratio of the force to the Casimir force between ideal
metals:

gðdÞ ¼ FðdÞ
FcðdÞ; FcðdÞ ¼ � p2�hc

240d4
: ð10:15Þ

We calculate the force between similar materials at T = 0 using the substitute
(10.5) in (10.1). For convenience of the numerical procedure one can make an
appropriate change of variables so that the reduction factor can be presented in the
form
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gðdÞ ¼ 15
2p4

X
l¼s;p

Z1

0

dx

Z1

0

dyy3

r�2
l ey � 1

; ð10:16Þ

where the reflection coefficients as functions of x and y are defined as

rs ¼
1� s

1þ s
; rp ¼

eðifcxyÞ � s

eðifcxyÞ þ s
; ð10:17Þ

with

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 eðifcxyÞ � 1½ �

p
; fc ¼

c

2d
: ð10:18Þ

The integral (10.16) was calculated numerically with different dielectric func-
tions eiðifÞ: The results are presented in Fig. 10.5a for samples 1, 3, and 5. The
reference curve (thick line) calculated with e0ðifÞ is also shown for comparison.
It represents the reduction factor, which is typically used in the precise calcu-
lations of the Casimir force between gold surfaces. One can see that there is
significant difference between this reference curve and those that correspond to
actual gold films. To see the magnitude of the deviations from the reference
curve, we plot in Fig. 10.5b the ratio ðg0 � giÞ=g0 as a function of distance d for
all five samples.

At small distances the deviations are more sensitive to the value of xp: At large
distances the sample dependence becomes weaker and more sensitive to the value
of xs: For samples 1 and 2, which correspond to the 400 and 200 nm films
deposited on Si substrates, the deviations are especially large. They are 12–14% at
d\100 nm and stay considerable even for the distances as large as 1 lm: Samples
3, 4, and 5 have smaller deviations from the reference case but even for these
samples the deviations are as large as 5–7%.
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Fig. 10.5 a Reduction factor g as a function of the separation d for samples 1, 3, and 5. The thick
line shows the reference result calculated with e0ðifÞ: b Relative deviations of the reduction
factors for different samples from the reference curve g0ðdÞ; which were evaluated using the
handbook optical data [7] and the Drude parameters xp ¼ 9 eV; xs ¼ 35 meV
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10.2.3 Low Permittivity Dielectric Materials

The Lifshitz theory predicts [3] that the dispersive force can be changed from
attractive to repulsive by immersing the interacting materials immersed in a liquid.
Recently this prediction was confirmed experimentally [45] (see Chap. 8 by
Capasso et al. in this volume). Repulsive forces arise when the dielectric function
at imaginary frequencies in the liquid gap, e0ðifÞ; is in between the functions of the
interacting bodies 1 and 2: e1ðifÞ > e0ðifÞ > e2ðifÞ: One can expect significant
dependence on precise dielectric functions nearby the transition from attractive to
repulsive force. This situation is exactly the case for the system silica–liquid–gold.
In this section we present calculations for multiple liquids with various degrees of
knowledge of the dielectric functions.

Liquids do not have grains or defects, but the density of a liquid is a function of
temperature [46], and as a result the number of absorbers in the liquid varies with
temperature. Furthermore, liquids can contain impurities like salt ions which can
change the dielectric function (see discussion in Ref. [47]). Although for metals
the dielectric function is very large in the IR regime, for liquids and glasses it is
not the case. Consequently for low dielectric materials the UV and VUV dielectric
data have a strongest effect on the forces.

For gold, silica, and water the dielectric functions are well known and
measured by various groups. Let us consider first the interaction in the system
gold–water–silica. We will use two sets of data for gold from the previous
subsection (sample 1 and the ‘‘ideal sample’’). Also two sets of data will be used
for silica as obtained by different groups [48]. Finally, for water we will use the
data of Segelstein compiled from different sources [49], and an 11-order oscil-
lator model [50] that has been fit to different sets of data [51, 52]. All the
dielectric data are collected in Fig. 10.6a. The corresponding functions at
imaginary frequencies are shown in Fig. 10.6b. One can see considerable dif-
ference between solid and dashed curves corresponding to different sets of the
data.

It has to be noted that e00ðxÞ for water and silica are very close in a wide range
of frequencies 5 � 10�2\x\5 � 102 eV: As the result at imaginary frequencies
eSiO2
ðifÞ and eH2OðifÞ differ on 30% or less in the range 10�2\f\102 eV; which is

comparable with the magnitude of variation of eðifÞ due to data scattering. This
similarity in the dielectric functions results in a strong dependence of the Casimir
force in the system gold–water–silica on the used optical data. It is illustrated in
Fig. 10.7a where the relative change of the force is shown. The spreading of the
force data reaches a level of 60% for separation d\500 nm: The effect can even be
more clearly seen in Fig. 10.7b. The solid curve shows variation of the force in
Au–water–Au system when different optical data for Au are used. In this case the
relative change of the force is not very large. However, for the system silica–
water–silica the use of different optical data for silica influence the force very
significantly (dashed curve).
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We have to conclude that comparison of force measurements with prediction
of the Lifshitz theory becomes reliable when the dielectric properties of the
specific samples used in force measurement are measured over a wide range of
frequencies.

In most of the papers where liquid gap between bodies is studied the dielectric
function of the liquid is approximated using the oscillator models [53, 54]. For
illustration purposes we mention that alcohols (and other liquid substances) can be
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described, for example, by a three oscillator model for the dielectric function eðifÞ
at imaginary frequencies [53]

eðifÞ ¼ 1þ e0 � eIR

1þ f=xMW
þ eIR � n2

0

1þ ðf=xIRÞ2
þ n2

0 � 1

1þ ðf=xUVÞ2
: ð10:19Þ

Here n0 is the refractive index in the visible range, e0 is the static dielectric
constant, and eIR is the dielectric constant where MW relaxation ends and IR
begins. The parameters xMW ; xIR; and xUV are the characteristic frequencies
of MW, IR, and UV absorption, respectively. It has to be stressed that
oscillator models should be used with caution, because some of them are of
poor quality [16].

For ethanol rather detailed information on the dielectric function exists, but
even in this case variation in dielectric data was found [16, 40]. An interesting fact
for higher alcohols is that the absorption in the UV range increases when
increasing the alkane chain. In Fig. 10.8 we show the dielectric data for the first
four alcohols.
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The VUV data were taken from [55]. These measurements were done in the gas
phase, but they can be converted to the liquid case by considering the number of
absorbers in gas and liquid. The near UV data was taken from [56]. For the XUV
we have only data for ethanol and propanol [57]. For methanol and butanol we
used cubic extrapolation, e00 � 1=x3; which is in very good agreement with the
cases of ethanol and propanol. In the near IR (NIR) to visible (VIS) ranges the
extinction coefficient k of ethanol, and other alcohols, is very low and can be taken
to be zero, k = 0, which is qualitatively consistent with the fact that all alcohols are
transparent in the visible range. The IR data can be found in Ref. [58]. The far IR
(FIR) data are known only for methanol [59]. For the other alcohols we take the
similar functional behavior as for methanol but with different parameters and
extrapolate the data to far IR in this way.

If one has to estimate the dielectric functions for some alcohols, first of all one
has to have measured data in the range of major IR peaks and even more
importantly the UV absorption must be carefully measured. Thus the dielectric
functions at imaginary frequencies should be reasonably accurate to within the
scatter of the data as it was found for ethanol [40].

With the optical data for alcohols we calculated the forces in the system gold–
alcohol–silica. The forces are attractive and become weaker for methanol, ethanol
and propanol. For butanol they are extremely weak, but still either repulsive or
attractive. Caution is required in the analysis of optical properties in liquids since
in general the KK consistency has to be applied properly in order to correct for
variation of the dielectric properties observed in between different measuring
setups. Effectively the force for gold–butanol–silica is screened to within the
scatter of the forces related to sample dependence of the optical properties of
silica. Measurements between gold and glass with simple alcohols were per-
formed, but experimental uncertainty, and double layer forces prevented the
measurement of this effect [60].

10.3 Influence of Surface Roughness on the
Casimir–Lifshitz Force

The Lifshitz formula (10.1) does not take into account inevitable roughness of the
interacting bodies. When rms roughness of the bodies is much smaller than the
separation, then the roughness influence on the force can be calculated using the
perturbation theory [17–19]. However, when the separation becomes comparable
with the roughness the perturbation theory cannot be applied. It was demonstrated
experimentally [24] that in this regime the force deviates significantly from any
theoretical prediction. The problem of short separations between rough bodies is
one of the unresolved problems. In this section we give introduction into inter-
action of two rough plates and a sphere and a plate.
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10.3.1 Main Characteristics of a Rough Surface

Suppose there is a rough plate which surface profile can be described by the
function hðx; yÞ; where x and y are the in-plane coordinates. An approximation for
this function is provided for example, by an AFM scan of the surface. It gives the
height hij at the pixel position xi ¼ D � i and yj ¼ D � j; where i; j ¼ 1; 2; . . .;N and
D is the pixel size that is related to the scan size as L ¼ D � N: We can define the
mean plane of the rough plate as the averaged value of the function hðx; yÞ:
�h ¼ A�1

R
dxdyhðx; yÞ; where A is the area of the plate. This definition assumes

that the plate is infinite. In reality we have to deal with a scan of finite size, for
which the mean plane is at

hav ¼
1

N2

X
i;j

hðxi; yjÞ: ð10:20Þ

The difference �h� hav; although small, is not zero and is a random function of the
scan position on the plate. This difference becomes larger the smaller the scan size is.
Keeping in mind this point, which can be important in some situations (see below),
we can consider (10.20) as an approximate definition of the mean plane position.

An important characteristic of a rough surface is the rms roughness w, given by

w ¼ 1
N2

X
i;j

hðxi; yjÞ � hav

� �2
; ð10:21Þ

that can be interpreted as the interface thickness. More detailed information on the
rough surface can be extracted from the height-difference correlation function
defined for the infinite surface as

gðRÞ ¼ 1
A

Z
dxdy hðrþ RÞ � hðrÞ½ �2; ð10:22Þ

where r ¼ ðx; yÞ and R ¼ r0 � r:
A wide variety of surfaces, as for example, deposited thin films far from

equilibrium, exhibit the so called self-affine roughness which is characterized
besides the rms roughness amplitude w by the lateral correlation length n (indi-
cating the average lateral feature size), and the roughness exponent 0\H\1 [61–
63]. Small values of H� 0 correspond to jagged surfaces, while large values of
H� 1 to a smooth hill valley morphology. For the self-affine rough surfaces gðRÞ
scales as

gðRÞ ¼ R2H ; R� n;
2w2; R� n:

�
ð10:23Þ

The parameters w, n and H can be determined from the measured height-difference
correlation function gðRÞ: This function can be extracted approximately from the
AFM scans of the surface.
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To find the roughness correction to the force one has to know (see below) the
spectral density rðkÞ of the height-height correlation function CðRÞ: The latter is
related to gðRÞ as gðRÞ ¼ 2w2 � CðRÞ: An analytic form of the spectral density for
a self-affine surface is given by [64, 65]

rðkÞ ¼ CHw2n2

1þ k2n2� 	1þH ; C ¼ 2

1� 1þ k2
cn

2� 	�H : ð10:24Þ

Here C is a normalization constant [63–65] and kc ¼ 2p=Lc is the cutoff
wavenumber.

10.3.2 Roughness Correction

While the separation between two surfaces is large in comparison with the rms
roughness, d � w; one can use the perturbation approach to calculate the
roughness correction to the Casimir force. This correction was calculated first
using the proximity force approximation [66]. This approximation assumes that
the surface profile varied slowly in comparison with the distance between the
bodies. The lateral size of a rough profile is given by the correlation length n;
therefore, PFA can be applied if n� d: This condition is very restrictive since
typical values of n for deposited metals films (grain size) are in the range
20–100 nm. In most of the experimental situations the condition n� d is
broken. More general theory [17–19] for the roughness correction can be applied
at n d and treats the correction perturbatively within the scattering formalism
(see the Chap. 4 by Lambrecht et al. in this volume). Here we discuss appli-
cation of this theory to realistic rough surfaces and describe situations, for which
one has to go beyond the perturbation theory to find agreement with
experiments.

10.3.2.1 Application of the Perturbation Theory

Let us consider two parallel rough plates. A plate surface can be described by the
roughness profile hiðx; yÞ (i ¼ 1; 2 for plate 1 or 2) as shown in Fig. 10.9a. The
averaged value over large area is assumed to be zero hiðx; yÞh i ¼ 0: Then the local
distance between the plates is

dðx; yÞ ¼ d � h1ðx; yÞ � h2ðx; yÞ: ð10:25Þ

This distance depends on the combined rough profile hðx; yÞ ¼ h1ðx; yÞ þ h2ðx; yÞ:
As explained in Sect. 10.3.3 the interaction of two rough plates is equivalent to the
interaction of a smooth plate and a rough plate with the roughness given by the
combined profile hðx; yÞ (see Fig. 10.9b).
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Let us assume further that the interaction energy per unit area of two flat plates
is EppðdÞ: If the rms roughness of the combined profile hðx; yÞ is small, w� d; but
the correlation length is large, n� d; we can present the interaction between
rough plates as

Erough
pp ¼ Epp dðx; yÞð Þ


 �
� EppðdÞ þ

E00pp

2
h2

 �

; ð10:26Þ

where h2

 �

¼ w2 ¼ w2
1 þ w2

2: Equation (10.27) defines the PFA roughness cor-
rection dEpp ¼ E00ppw2=2: This correction was used in all early studies to estimate
the roughness effect.

It was noted [17] that in most experimental configurations the condition n� d
is broken and PFA cannot be applied. In Refs. [18, 19] was developed a theory,
which is not restricted by the condition n� d: Within this theory the roughness
correction is expressed via the spectral density of the rough surface rðkÞ as

dEppðdÞ ¼
Z

d2k

ð2pÞ2
Gðk; dÞrðkÞ; ð10:27Þ

where Gðk; dÞ is a roughness response function derived in [19]. The PFA result
(10.27) is recovered from here in the limit of small wavenumbers k! 0 when
Gðk; dÞ ! E00ppðdÞ=2: The roughness power spectrum is normalized by the condi-

tion
R

d2krðkÞ=ð2pÞ2 ¼ w2: The spectrum itself can be obtained from AFM scans
and in the case of self-affine rough surfaces is given by (10.24).

Let us enumerate the conditions at which (10.27) is valid. (i) The lateral
dimensions of the roughness n must be much smaller than the system size L,
n� L: This is usually the case in experiments. (ii) The rms roughness w must be
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Fig. 10.9 Contact of two rough surfaces. a Two rough plates in contact. Roughness of each
plate, hiðx; yÞ; is counted from the mean plane shown by the dashed line. The distance between
bodies is the distance between these mean planes. b The interaction between two rough plates is
equivalent to the interaction between a smooth plate and a rough plate with the roughness given
by the combined profile hðx; yÞ: The distance upon contact, d0 has well defined meaning in this
case. See Sect. 10.3.3 and Ref. [73] for details
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small compared to the separation distance, w� d: This condition means that
roughness is treated as perturbative effect. (iii) The lateral roughness dimensions
must be much larger than the vertical dimensions, w� n [19]. The last two
assumptions are not always satisfied in the experiment.

In the plate-plate configuration the force per unit area can be calculated as the
derivative of Erough

pp ðdÞ: For the sphere-plate configuration, which is used in most of

the experiments, the force is calculated with the help of PFA as FspðdÞ ¼
2pRErough

pp ðdÞ: In contrast with the roughness correction the latter relation is jus-
tified for d � R; which holds true for most of the experimental configurations. We
use the sphere-plate configuration to illustrate the roughness effect. The deposited
gold films can be considered as self-affine. For all calculations reported here we
are using our smoothest spheres with the parameters w ¼ 1:8 nm; n ¼ 22 nm; and
H ¼ 0:9: We alter only the plate roughness since it is easy to prepare and replace
during experiments. We use the optical data for gold films described previously. It
was found that the PFA limit is quickly recovered for increasing correlation length.
Deviations from PFA prediction for real films were found to be about 1–5% in the
range d ¼ 50�200 nm:

Therefore, for real rough surfaces the scattering theory gives a few percent
correction to the force compared to the PFA. This difference is difficult to measure.
However, at small separations both PFA and perturbation theory fail since the rms
roughness becomes comparable in size to the separation distance. It would be
interesting to calculate the roughness effect when d is comparable with w. At the
moment there is no a theoretical approach to estimate the effect except a direct
numerical analysis similar to that used in [67]. It will therefore be interesting to do
a full numerical analysis for films with high local slopes instead of using pertur-
bation theory. On the other hand it is experimentally possible to go to sufficiently
small distances as it will be discussed below.

10.3.2.2 Experimental Evidence of Large Roughness Effect

The Casimir forces between a 100 lm gold coated sphere and substrates covered
with Au of different thicknesses from 100 nm to 1600 nm were measured in [24].
Different layers of Au resulted to different roughnesses and different correlation
lengths, which are collected in Table 10.3. The roughness exponent was constant

Table 10.3 The parameters characterizing the sphere-film systems (all in nm) for R ¼ 50 lm:
The first three rows were determined from combined images. The last row for del

0 gives the values
of d0 determined electrostatically. The errors are indicared in brackets

100 nm 200 nm 400 nm 800 nm 1600 nm

w 3.8 4.2 6.0 7.5 10.1
n 26.1(3.8) 28.8(3.7) 34.4(4.7) 30.6(2.4) 42.0(5.5)
dim

0 12.8(2.2) 15.9(2.7) 24.5(4.8) 31.3(5.4) 55.7(9.3)

del
0 17.7(1.1) 20.2(1.2) 23.0(0.9) 34.5(1.7) 50.8(1.3)
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H ¼ 0:9	 0:05 in agreement with former growth studies of thin films [62, 64, 65].
The sphere was attached to a cantilever with a spring constant of 0.2 N/m. The
calibration procedure is described in [24].

The force results are shown in Fig. 10.10. Our measurements were restricted to
separations below 200 nm where the Casimir force is large enough compared to
the approximately linear signal from laser light surface backscattering [24, 26].
The small separation limit or contact point is restricted by the jump to a contact
(� 5 nm) [68–70] and surface roughness. Note that an error of 1.0 nm in absolute
distance leads to errors in the forces of up to 20% at close separations as for
example d� 10 nm [24]. Thus we cannot detect the scattering effects described
above. What we do see is the failure of the perturbation theory, for the roughest
films, for which the roughness strongly increases the force. These deviations are
quite large, resulting in much stronger forces at the small separations \70 nm: At
larger separations, 70–130 nm (within our measurement range), where the
roughness influence is negligible, the usual 1=d2:5 scaling of the force observed
also in other experiments with gold is recovered and agreement with the theory is
restored. For the smoother films deviations from theory below 40 nm can be
explained with the error in the distance.

Qualitatively the roughness effect can be reproduced by calculating the force
between small areas on the surfaces separated by the local distance dðx; yÞ: One
can call this procedure the non-perturbative PFA approach. Although it is quali-
tative, it can be used to obtain an estimate of the force at close proximity (2 nm
above the point upon contact), where the roughness has an enormous influence on
the Casimir force (see inset in Fig. 10.10). This explains the jump to contact only
partially, since approximately 5 nm above the point of contact, the capillary force
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Fig. 10.10 Casimir forces measured for the films of different roughness. The roughness effect
manifests itself as a strong change in scaling at smaller separations, where the forces become
much stronger. Errors in separation are shown for some points by the horizontal bars. The
theoretical curves are shown for the 100 nm (smooth) and 1600 nm (rough) films. The inset
shows the forces calculated by integrating over the roughness scans using PFA (see text)
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will act as well. This force appears due to absorbed water and Kelvin condensation
[22, 71] resulting in water bridges formation between bodies. In the limit of fully
wetted surface (see Fig. 10.11) the capillary force is given by Fcap � 4pcR cos#

(upper dashed line), while for a single asperity (of size n) wetting the minimum
capillary force is Fcap � 4pcn cos# (lower dashed line). Here c is the surface
tension of liquid, and # is the contact angle [68, 70].

At this point we have to compare the Casimir adhesion between rough films
with adhesion by capillary forces [69, 70]. While Casimir forces may lead to
stiction between movable parts, once the surfaces are in contact capillary forces
(being present in air between hydrophilic surfaces into close proximity) are much
stronger. The roughness effect on capillary adhesion is also much stronger as
shown in Fig. 10.11. Note that the Casimir force for a R ¼ 50 lm sphere is in the
order of 10 nN at 10 nm separations. Capillary forces between a mica substrate
and the same sphere are as large as 10 lN deeming contact measurements with soft
cantilevers (spring constant \1 N/m) even impossible since the retraction range
is outside of that of most piezo z-ranges. Measurements of the capillary forces with
a smooth sphere used for the Casimir force measurement are shown in Fig. 10.11.
One can see that when roughness increases a few times the force decreases by
more than a factor of 100. This can be related to full sphere wetting and asperity
wetting. The size of the sphere R ¼ 50 lm is 1000 times larger than that of an
asperity n� 50 nm: Multiple asperity capillary bridge formation is likely to happen
in the rough regime giving increasing forces.

Furthermore, formation of capillary bridges means that under ambient condi-
tions gold absorbs water, and as a result it is covered with an ultra thin water layer.
The experiments [68, 70] suggest that the thickness of this layer is in the nano-
meter range, 1–2 nm. The natural questions one could ask is how thick the water
layer is, and what is the influence of this water layer on the dispersive force [72]?
At short separations, d\20 nm; these questions become of crucial importance
because they place doubts in our understanding of the dispersive forces when
experiments under ambient conditions are compared with predictions of the
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Fig. 10.11 Capillary forces
in air (relative humidity
2–60%) for a smooth gold
coated sphere, wsph � 1 nm;
measured with a stiff
cantilever, k ¼ 4 N/m; and
different rough films. The
inset shows a fully wetted
sphere (upper dashed line),
and a roughness asperity
wetted sphere (lower dashed
line)

334 P. J. van Zwol et al.



Lifshitz theory. Figure 10.12 shows the Casimir force measured at short distances
together with theoretical calculations made for gold with or without a water layer
on top. The errors are shown to arise mainly from the experimental uncertainty in
determining the separation upon contact d0 due to nanoscale surface roughness.
We can conclude that the experiment can exclude the water layer thicker than
1.5 nm. Figure 10.12b shows that the effect of water becomes very significant at
separations below 10 nm, which were not accessible in our measurements due to
jump-into-contact. We presented only the forces between flat surfaces because at
these small separations there is no a reliable way to estimate the roughness
correction.

10.3.3 Distance upon Contact

The absolute distance separating two bodies is a parameter of principal importance
for the determination of dispersive forces. It becomes difficult to determine when
the separation gap approaches nanometer dimensions. This complication originates
from the presence of surface roughness, which manifests itself on the same scale.
In fact, when the bodies are brought into gentle contact they are still separated by
some distance d0; which we call the distance upon contact due to surface rough-
ness. This distance has a special significance for weak adhesion, which is mainly
due to van der Waals forces across an extensive noncontact area [21]. It is
important for MEMS and NEMS as unremovable reason for stiction [22]. In the
modern precise measurements of the dispersive forces d0 is the main source of
errors (see reviews [5, 6]). This parameter is typically determined using electro-
static calibration. The distance upon contact is usually considerably larger than the
rms roughness because it is defined by the highest asperities. It is important to
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clear understand the origin of d0; its dependence on the lateral size L of involved
surfaces, and possible uncertainties in its value [73]. These are the questions we
address in this subsection.

10.3.3.1 Plate-Plate Contact

Two plates separated by the distance d and having roughness profiles hiðx; yÞ are
locally separated by the distance dðx; yÞ given by (10.25) (see Fig. 10.9). Indeed,
the averaged local distance has to give d, dðx; yÞh i ¼ d: We can define the distance
upon contact d0 as the largest distance d ¼ d0; for which dðx; yÞ becomes zero.

It is well known from contact mechanics [74] that the contact of two elastic
rough plates is equivalent to the contact of a rough hard plate and an elastic flat
plate with an effective Young’s modulus E and a Poisson ratio m: Here we analyze
the contact in the limit of zero load when both bodies can be considered as hard.
This limit is realized when only weak adhesion is possible, for which the dis-
persive forces are responsible. Strong adhesion due to chemical bonding or due to
capillary forces is not considered here. This is not a principal restriction, but the
case of strong adhesion has to be analyzed separately. Equation (10.25) shows that
the profile of the effective rough body is given by

hðx; yÞ ¼ h1ðx; yÞ þ h2ðx; yÞ: ð10:28Þ

The latter means that hðx; yÞ is given by the combined image of the surfaces facing
each other. If topography of the surfaces was determined with AFM, we have to
take the sum of these two images and the combined image will have the size of the
smallest image.

To determine d0 we collected [73] high resolution megascans (size 40�
40 lm2; lateral resolution 4096� 4096 pixels) for gold films of different thick-
nesses described before. The maximal area, which we have been able to scan on
the sphere, was 8� 8 lm2 (2048� 2048 pixels). The images of 100 nm film,
sphere, and 1600 nm film are shown in Fig. 10.1 a–c, respectively. Combining two
images and calculating from them the maximal peak height we can find d0 for a
given size of the combined image. Of course, taking the images of the same size
every time we will get different value of d0 and averaging over a large number of
images we will find the averaged d0 and possible rms deviations. This is quite
obvious. What is less obvious is that if we take images of different size and will do
the same procedure the result for d0 will be different.

Let L0 be the size of the combined image. Then, in order to obtain information
on the scale L ¼ L0=2n; we divide this image on 2n subimages. For each subimage
we find the highest point of the profile (local d0), and average all these values. This
procedure gives us d0ðLÞ and the corresponding statistical error. Megascans are
very convenient for this purpose otherwise one has to collect many scans in
different locations. For the 100 nm film above the 400 nm film the result of this
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procedure is shown in Fig. 10.13a. We took the maximum area to be 10� 10 lm2:
The figure clearly demonstrates the dependence of d0 on the scale L although the
errors appear to be significant. The dependence of the rms roughness w on the
length scale L is absent in accordance with the expectations, while only the error
bars increase when L is decreasing.

To understand the dependence d0ðLÞ let us assume that the size L of the area of
nominal contact is large in comparison with the correlation length, L� n: It
means that this area can be divided into a large number N2 ¼ L2=n2 of cells. The
height of each cell (asperity) can be considered as a random variable h. The
probability to find h smaller than some value z can be presented in a general form

PðzÞ ¼ 1� e�/ðzÞ; ð10:29Þ

where the ‘‘phase’’ /ðzÞ is a nonnegative and nondecreasing function of z. Note that
(10.29) is just a convenient way to represent the data: instead of cumulative dis-
tributions PðzÞ we are using the phase /ðzÞ; which is not a so sharp function of z.

For a given asperity the probability to find its height above d0 is 1� Pðd0Þ; then
within the area of nominal contact one asperity will be higher than d0 if

e�/ðd0Þ L2=n2� 	
¼ 1 or /ðd0Þ ¼ ln L2=n2� 	

: ð10:30Þ

This condition can be considered as an equation for the asperity height because
due to a sharp exponential behavior the height is approximately equal to d0: To
solve (10.30) we have to know the function /ðzÞ; which can be found from the
roughness profile.

The cumulative distribution PðzÞ can be extracted from combined images by
counting pixels with the height below z. Then the ‘‘phase’’ is calculated as /ðzÞ ¼
� lnð1� PÞ: The results are presented in Fig. 10.13b. The procedure of solving
(10.30) is shown schematically in Fig. 10.13b by dashed lines, and the solution
itself is the curve in Fig. 10.13a. It has to be mentioned that the normal distribution
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fails to describe the data at large z. Other known distributions cannot satisfactorily
describe the data for all z. Asymptotically at large jzj the data can be reasonably
well fit with the generalized extreme value Gumbel distributions (solid lines in
Fig. 10.13b) [75]:

ln /ðzÞ ¼ �az; z! �1
bz; z!1

�
ð10:31Þ

The observed dependence d0ðLÞ can be understood intuitively. The probability
to have one high asperity is exponentially small but the number of asperities
increases with the area of nominal contact. Therefore, the larger the contact area,
the higher probability to find a high feature within this area. Scale dependence of
d0 shows that smaller areas getting into contact will be bound more strongly than
larger areas because upon the contact they will be separated by smaller distances.
This fact is important for weak adhesion analysis.

10.3.3.2 Sphere-Plate Contact

Most of the Casimir force experiments measure the force in the sphere-plate
configuration to avoid the problem with the plates parallelism. Let us consider how
the scale dependence of d0 manifests itself in this case. Assuming that the sphere is
large, R� d; the local distance is

dðx; yÞ ¼ d þ x2 þ y2
� 	

=2R� hðx; yÞ; ð10:32Þ

where hðx; yÞ is the combined topography of the sphere and the plate. As in the
plate-plate case d0 is the maximal d, for which the local distance becomes zero.
This definition gives

d0 ¼ max
x;y

hðx; yÞ � x2 þ y2
� 	

=2R
� �

: ð10:33Þ

Now d0 is a function of the sphere radius R, but, of course, one can define the
length scale LR corresponding to this radius R.

As input data in (10.33) we used the combined images of the sphere and
different plates. The origin (x ¼ 0; y ¼ 0) was chosen randomly in different
positions and then d0 was calculated according to (10.33). We averaged d0 found
in 80 different locations to get the values of dim

0 ; which are collected in Table 10.3.
The same values can be determined theoretically using d0ðLÞ found between two
plates (see (10.30) and Ref. [73]).

The values of dim
0 for rougher films are in agreement with those found from the

electrostatic calibration. However, for smoother films (100 and 200 nm) dim
0 and del

0
do not agree with each other. This is most likely to be attributed to the roughness on
the sphere, which varies considerably locally. For example, between those 80 dim

0

found in different locations 5% are in agreement with del
0 found from the electro-

static calibration [73]. This is illustrated by the fact that when the roughness of the
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plate dominates the discrepancy between dim
0 and del

0 disappears. Note that the
standard deviations for dim

0 are larger than that for del
0 : The standard deviations in

dim
0 originate from place to place variations of dim

0 : In the case of electrostatic
determination of d0 statistical variation of d0 from place to place is not included in
the errors of del

0 : This explains why the errors in del
0 are smaller.

Consider the experimental situation when the dispersive force is measured in the
sphere-plate configuration. The system under consideration is equivalent to a
smooth sphere above a combined rough profile hðx; yÞ: The position of the average
plane depends on the area of averaging L2 especially for small scales L. The profile
shown in Fig. 10.14 demonstrates different mean values in the left and right seg-
ments shown by the dashed black lines. Both of these values deviate from the middle
line for the scale 2L (solid black line). The true average plane is defined for L!1:

Position of the average plane define the absolute separation of the bodies. It has
to be stressed that the electrostatic and Casimir interactions ‘‘see’’ different areas
on the plate. This is due to different dependence on d and quite often the elec-
trostatic calibration is performed at larger separations than measurement of the
Casimir force. The size L of the interaction area is determined by the relation
L2 ¼ apRd; where a ¼ 2 for the electrostatic and a ¼ 2=3 for pure Casimir force.
Therefore, these two interactions can ‘‘see’’ different positions of the average
planes. It introduces an additional uncertainty dd in the absolute separation [73].
For a fixed L this uncertainty is a random variable distributed roughly normally
around dd ¼ 0: However, it has to be stressed that dd manifests itself not as a
statistical error but rather as a kind of a systematic error. This is because at a given
lateral position of the sphere this uncertainty takes a fixed value. The variance of
dd is defined by the roughness statistics. It was calculated from the images and
shown as inset in Fig. 10.14. One has to remember that with a probability of 30%
the value of dd can be larger than that shown in Fig. 10.14.
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10.4 Conclusions

In this chapter we considered the Casimir force between realistic materials con-
taining defects, which influence the optical properties of interacting materials, and
having surface roughness, which contributes to the force.

It was demonstrated that the gold films prepared in different conditions have
dielectric functions, which differ from sample to sample, and this difference cannot
be ignored in the calculation of the Casimir force aimed at precision better than
10%. The main conclusion is that for metals one has to measure the dielectric
function of used materials in a wide range of frequencies, where far and mid IR are
especially important. Precise knowledge of the dielectric functions is also
important for low permittivity dielectric materials. In this case significant sensi-
tivity of the force to the dielectric functions is realized nearby the attractive-to-
repulsive transition in solid–liquid–solid systems.

The roughness correction to the Casimir force can be reliably calculated if rms
roughness w is small in comparison with the separation, w� d; when one can
apply the perturbation theory. In the experiments at short separations this condition
can be violated. The current situation with the theory is that there is no direct
method to calculate the force between rough bodies when d�w except using
rather complicated numerical calculations.

We gave also a detailed analysis of the distance upon contact, d0; which is an
important parameter in Casimir physics. Analysis of AFM scans demonstrated that
d0 is always a few times larger than the rms roughness. Moreover, d0 is a function
of the size L of the nominal area of contact. This dependence is important for weak
adhesion, which is due to van der Waals forces across an extensive noncontact
area. Uncertainty in d0 is the main source of errors in the Casimir force mea-
surements. We demonstrated here that there is an additional indefiniteness in d0;
which cannot be excluded by the electrostatic calibration. It becomes very
important for small areas of interaction. Also, this indefiniteness has to be taken
into account if one compares two independent experiments.
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Chapter 11
Fluctuation-Induced Forces Between
Atoms and Surfaces: The Casimir–Polder
Interaction

Francesco Intravaia, Carsten Henkel and Mauro Antezza

Abstract Electromagnetic fluctuation-induced forces between atoms and surfaces
are generally known as Casimir–Polder interactions. The exact knowledge of these
forces is rapidly becoming important in modern experimental set-ups and for
technological applications. Recent theoretical and experimental investigations
have shown that such an interaction is tunable in strength and sign, opening new
perspectives to investigate aspects of quantum field theory and condensed-matter
physics. In this chapter we review the theory of fluctuation-induced interactions
between atoms and a surface, paying particular attention to the physical charac-
terization of the system. We also survey some recent developments concerning the
role of temperature, situations out of thermal equilibrium, and measurements
involving ultra-cold atoms.

11.1 Introduction

In the last decade remarkable progress in trapping and manipulating atoms has
opened a wide horizon to new and challenging experimental set-ups. Precision
tests of both quantum mechanics and quantum electrodynamics have become
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possible through the capacity of addressing single trapped particles [1, 2] and of
cooling ultracold gases down to Bose–Einstein condensation [3–5]. This stunning
progress is also very profitable to other fundamental areas of physics and to
technology. For example, ultracold gases have been suggested as probes in
interesting experimental proposals aiming at very accurate tests of the gravity law
[6–8], looking for extra forces predicted by different grand-unified theories [9] (see
also the Chap. 3 by Milton in this volume for detailed discussions on the interplay
between Casimir energy and gravity). Technologically speaking, one paradigmatic
example of this new frontier is provided by atom chips [10, 11]. In these tiny
devices, a cloud of atoms (typically alkalis like Sodium, Rubidium or Cesium) is
magnetically or optically trapped above a patterned surface, reaching relatively
short distances between a few microns to hundreds of microns [12–14]. The micro-
machined surface patterns form a system of conducting wires, which are used to
control the atomic cloud by shaping electromagnetic trapping fields (also super-
conducting wires have been demonstrated [15–17]).

At a fundamental level, all these systems have in common to be strongly
influenced by all kinds of atom–surface interactions. A particular category are
fluctuation-induced forces, of which the most prominent representative is the van
der Waals interaction [18]. These forces usually derive from a potential with a
characteristic power-law dependence

van der Waals limit: V ¼ VvdW /
1
Ln
; ð11:1Þ

where L is the distance between the objects (two atoms or a surface and a atom)
and the exponent depends upon physical parameters and geometry of the system
(n ¼ 3 for an atom and a thick plate, see Fig. 11.1). Historically speaking, the
existence of this kind of interaction was postulated long before it was experi-
mentally possible to address single atoms [20]. The first quantum-mechanical
theory was formulated by F. London in the 1930s using the idea that the quantum
mechanical uncertainty of electrons in atoms can be translated into fluctuating
electric dipole moments [21]. London found that two atoms attract each other
following (11.1) with an exponent n ¼ 6: London’s theory was extensively applied
in studying colloidal suspensions [22] which provided confirmations of its validity
but also showed its limitations.

The next step was taken by H.B.G. Casimir and his student D. Polder [23] who
applied the framework of quantum electrodynamics, including the concept of
vacuum (field) fluctuations. They generalized the London–van der Waals formula
by relaxing the electrostatic approximation, in other words, including the effect of
retardation. The main success of Casimir–Polder theory was to provide an
explanation for the change in the power law exponent observed in some experi-
ments [22]. Indeed for distances larger than a characteristic length scale k0 of the
system, the effect of retardation can no longer be neglected, and this leads to

Casimir--Polder limit L � k0: V ¼ VCP /
k0

Lnþ1
; ð11:2Þ
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and therefore to the L�7 dependence typical of the Casimir–Polder interaction
between two atoms. The scale k0 is in this case the wavelength of the main atomic
absorption lines, which is in the visible to near infrared for typical alkali atoms (of
the order of a few hundreds of nanometers).

The estimates (11.1, 11.2) apply at T ¼ 0 when only quantum fluctuations play
a role. If the temperature is nonzero, another length scale comes into play, the
thermal or Wien wavelength

kT ¼
�hc

kBT
; ð11:3Þ

which roughly corresponds to the wave length where the thermal radiation spec-
trum peaks. Calculations of the atom–surface interaction using thermal quantum
field theory have been pioneered by Dzyaloshinskii, Lifshitz, and Pitaevskii [19,
24]. They were able to recover the van der Waals and the Casimir–Polder
potentials as limit behavior of a more general expression and to confirm, quite
surprisingly, that at distances L� kT the interactions are typically dominated by
quantum fluctuations, the main reason being that their spectrum is much wider
than that of the thermal field (which is constrained by the Bose–Einstein distri-
bution [25]). At distances L� kT they show that the potential shows again a cross-
over from the Casimir–Polder to the Lifshitz asymptote:

Lifshitz limit L� kT : V ¼ VL /
k0

kTLn
� kBT

�hx0
VvdW; ð11:4Þ

Fig. 11.1 Atom–surface potential [free energy of interaction V(d)] versus distance d between a
87Rb atom and a SiO2 (sapphire) substrate, multiplied by d3: The potential is calculated using the
theory of Dzyaloshinskii, Lifshitz, and Pitaevskii (see see chapter VIII of [19]). Note the
logarithmic scale and the sign. The figure, adapted from Fig. 3 of [4], shows the potential at
T ¼ 300 K (solid line), at T ¼ 0 K (dash-dotted line), and the three asymptotic behaviors (dotted
lines): van der Waals–London / �1=d3; Casimir–Polder (/ �1=d4), and Lifshitz (/ �T=d3)
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where x0 is the (angular) frequency corresponding to k0: This potential that scales
with temperature is actually a free energy of interaction and is also known as the
Keesom potential between polar molecules: there, the dipoles are rotating freely
under the influence of thermal fluctuations [26]. In this case (Rydberg atoms
provide another example), the particle resonances overlap with the thermal
spectrum, and the Casimir–Polder regime is actually absent. Equation (11.4)
predicts an apparent enhancement, at nonzero temperature, of the fluctuation-
induced interaction, relative to the Casimir-Polder limit.. This does not necessarily
happen, however, because the molecular polarizabilities are also temperature-
dependent [26–28].

In Fig.11.1 above, we considered the case of an alkali atom whose peak
absorption wavelength k0 is much shorter than the Wien wavelength. The Lifshitz
tail is then much smaller than the van der Waals potential. Note that kT is of the
order of a few micrometers at room temperature, comparable to the smallest atom–
surface distances achieved so far in atom chips. The crossover between the
Casimir–Polder and the Lifshitz regimes can thus be explored in these set-ups. We
discuss corresponding experiments in Sect. 11.5.

In the following sections, we start with a derivation of the interaction between
an atom and a general electromagnetic environment (Sect. 11.2). We will refer to it
using the term ‘‘atom–surface interaction’’ or ‘‘Casimir–Polder interaction’’. This
term is also of common use in the literature to stress the fluctuation-induced nature
of the interaction, although the term ‘‘Casimir–Polder’’ more correctly indicates
the potential in the retarded limit (see (11.2)). The result will be valid within a
second-order perturbation theory and can be easily adapted to specific geometries.
We provide some details on a planar surface (Sect. 11.3). Situations out of global
thermal equilibrium are discussed in Sect. 11.4, dealing with forces on ultracold
atoms in a general radiation environment (the temperature of the surface and that
of the surrounding environment are not necessarily the same), and with radiative
friction. The final Sect. 11.5 sketches experiments with atomic beams and ultra-
cold samples.

11.2 Understanding Atom–Surface Interactions

The interaction between atoms and surfaces plays a fundamental role in many fields
of physics, chemistry and technology (see also the Chap. 12 of DeKieviet et al. in
this volume for detailed discussions on modern experiments on atom–surface
Casimir physics). From a quantum-mechanical point of view, fluctuation-induced
forces are not surprising and almost a natural consequence of the initial assump-
tions. Indeed the existence of fluctuations, even at zero temperature, is one of the
most remarkable predictions of the theory. Each observable corresponding to a
physically measurable quantity can be zero on average but its variance will always
be nonzero if the system is not in one of its eigenstates. When two quantum systems
interact, the dynamics of the fluctuations becomes richer: each subsystem
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experiences, in addition to its own fluctuations, an external, fluctuating force. This
becomes particularly clear in the case of a polarizable particle (atom or nanosphere)
interacting with the vacuum electromagnetic field. In vacuum, the electromagnetic
field fluctuates not only by itself, but also because there are fluctuating sources for
it, like the electric dipole moment of the particle. At the same time, the particle’s
dipole is not only fluctuating on its own, but is also responding to the fluctuations of
the electromagnetic field [29, 30]. As a result, when two atoms are brought nearby,
they interact through their fluctuations mediated by the electromagnetic field.
Similarly when a particle is in proximity of a macroscopic object, electric currents
fluctuating inside the object and the fluctuations of the particle lead to a distance-
dependent force. This second case is complicated by the fact of dealing with a
macroscopic object and its quantum-mechanical description. However, if the
medium responds linearly to an electromagnetic perturbation, the fluctuation-dis-
sipation theorem [31] provides a connection between the field’s autocorrelation
function and its macroscopic response (or Green function) (Fig. 11.2).

We will use the previous considerations as a starting point for the derivation of
the Casimir–Polder interaction between a surface and an atom or also a nano-
particle. We will follow Refs. [27, 32–34]. Although this is not the unique
approach [23, 24, 35–42], it provides a physically transparent way to reach our
final result.

11.2.1 Energy of a Polarizable Particle in an Electromagnetic
Field

When a polarizable particle is introduced in an electric field, the change in energy
of the system is given by [43]

F ¼ �hdðtÞ � Eðr0; tÞi
2

; ð11:5Þ

where, since we are working in the Heisenberg representation, all the operators are
time dependent. From the thermodynamic point of view the previous quantity is a

Fig. 11.2 A schematic
representation of the atom
in the trap near a surface
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free energy and gives the amount of work that can be extracted from the system by
moving the particle: in our (thermodynamic) convention a negative free energy
will correspond to an attractive interaction (binding energy).

The expectation value h� � �i is taken over the (initial) state of the non-coupled
system; d is the (electric or magnetic) dipole operator and E the corresponding
(electric or magnetic) field operator, evaluated at the dipole position r0: We are
implicitly assuming that the size of the particle is small enough to locally probe the
electromagnetic field (dipole approximation). The factor 1/2 in (11.5) arises from
the fact that we are considering the energy of a linearly polarizable particle in an
external field, rather than a permanent dipole [43]. Note that the choice of a
particular ordering does not seem to be necessary at this stage since the dipole
operator and the electric field operator commute. The symmetric order proves,
however, to be particularly useful if we want to attach a physical meaning to each
single contribution to the energy [29, 30], see (11.15).

The Hamiltonian of the coupled system can be in general written as H ¼
H0 þ V; where H0 is the sum of the Hamiltonians of the two isolated subsystems
and V describes the interaction between them. Starting from this, the equation of
motion for an operator A(t) can be written in the following integral form (Hei-
senberg picture)

AðtÞ ¼ AfreeðtÞ þ i
�h

Z t

0

ds e
i
�hH0ðt�sÞ½V ;AðsÞ� e i

�hH0ðt�sÞ; ð11:6Þ

where t ¼ 0 was chosen as initial time and the superscript free indicates that the
operator evolves with respect to the Hamiltonian of the uncoupled system (H0), i.e.

AfreeðtÞ ¼ e
i
�hH0tAe�

i
�hH0t: ð11:7Þ

Now, within first-order perturbation theory, (11.6) can be solved by replacing the
operator AðsÞ under the integral by its corresponding free evolution. If the inter-
action Hamiltonian is bilinear like in the case of the electric dipole interaction,
V ¼ �d � Eðr0Þ; we get the following approximate expression for the dipole
operator:

dðtÞ � dfreeðtÞ þ dindðtÞ; ð11:8aÞ

dindðtÞ ¼
Z1

�1

ds
i
�h
½dfreeðtÞ; dfreeðt � sÞ�hðsÞ

� �
� Efreeðr0; t � sÞ; ð11:8bÞ

and similarly for the field operator:

Eðr; tÞ � Efreeðr; tÞ þ Eindðr0; tÞ; ð11:9aÞ

Eindðr0; tÞ ¼1�1 ds
i
�h
½Efreeðr; tÞ;Efreeðr0; t � sÞ�hðsÞ

� �
� dfreeðt � sÞ: ð11:9bÞ
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The s-integral runs effectively over s	 0 (note the step function hðsÞ) because in
(11.6), only times s[ 0 after the initial time are relevant (causality). In addition, we
have set the upper limit to s ¼ 1 assuming that there exists a transient time sc after
which the system behaviour becomes stationary. This time can be estimated from
the system operators in (11.8b, 11.9b): the commutators are either c-number
functions that die out for time arguments that differ by more than sc; or taking the
expectation value, one gets subsystem correlation functions with sc as correlation
time.

We have therefore that, within the first order perturbation theory, the dipole in
addition to its unperturbed evolution (dfreeðtÞ) ‘‘responds’’ linearly (dindðtÞ) to an
external perturbation (in this case the electromagnetic field). The same also hap-
pens to the electromagnetic field where now the dipole is the external source of
perturbation. The term in parenthesis under the integrals (11.8b, 11.9b), when
evaluated over a particular state, is called susceptibility and contains the detailed
physical information about the linear response of the system to the perturbation
[29, 30]. In the particular case of a dipole the Fourier transform of the suscepti-
bility tensor is the polarizability

Z1

�1

dt
i
�h
haj½dfreeðtÞ; dfreeð0Þ�jaihðtÞeixt ¼ a

$aðxÞ; ð11:10Þ

where we have taken the expectation value for a given quantum state jai: In the
time domain (see (11.8b)), the atomic susceptibility links the hermitean dipole
operator to a hermitean field operator; hence it must be a real function. The
polarizability, being its Fourier transform, therefore satisfies

½a$aðxÞ�
 ¼ a
$að�x
Þ: ð11:11Þ

In addition, because of causality, (11.10) implies that a
$aðxÞ must be analytical in

the upper-half of the complex x-plane.
Similar conclusions hold for the electromagnetic field. If we assume that the

dynamics of the field and the surrounding matter (other than the atom) can be
completely described in terms of bosonic operators [39, 44, 45], the result of the
commutator in (11.9b) is a c-number and the susceptibility does not depend on the
state of the radiation. The linearity of the Maxwell equations then ensures that the
result of (11.9a,b) for a point-like dipole is correct to all orders. A simple iden-
tification leads to the following expression:

Z1

�1

i
�h
½Efreeðr; tÞ;Efreeðr0; 0Þ�hðtÞeixtdt ¼ G

$
ðr; r0;xÞ; ð11:12Þ

where G
$

is the electric field Green tensor, solution to the macroscopic Maxwell
equation

�rr �rr � G
$
ðr; r0;xÞ þ

x2

c2
eðr;xÞG

$
ðr; r0;xÞ ¼ �

x2

e0c2
dðr� r0Þ I

$
; ð11:13Þ
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where I
$

is the identity tensor and eðr;xÞ is the local dielectric function (here
supposed to be a scalar for simplicity) of the matter surrounding the dipole. In
conclusion, in frequency space the induced quantities can be described in terms of
the retarded response functions [43]

dindðxÞ ¼ a
$ðxÞ � Efreeðr0;xÞ;

Eindðr;xÞ ¼ G
$
ðr; r0;xÞ � dfreeðxÞ;

ð11:14Þ

where the frequency dependence and causality allow for a temporal delay. This is
slightly schematic because the polarizability tensor is defined only when the
average is taken.

Expressions (11.8a,b) and (11.9a,b) formalize the considerations made at the
beginning of this section: both the dipole moment dðtÞ and the field EðtÞ can be
split into two parts, the (free) fluctuating part describes the free intrinsic fluctua-
tion, while the induced part arises in perturbation theory from the dipole coupling
[25]. Equation (11.5) becomes

F ¼ �hd
indðtÞ; Efreeðr0; tÞi

2
� hE

indðr0; tÞ; dfreeðtÞi
2

: ð11:15Þ

We assumed a factorized initial state in which each free evolution operator is zero
on average and where the correlations between the fluctuating parts are entirely
encoded in the linear response functions, setting the correlation between the freely
fluctuating components to zero. This assumption would break down at higher
orders of perturbation theory. Note that while in (11.5) the total dipole and field
operators (Heisenberg picture) commute at equal times, this is no longer true for
their ‘ind’ and ‘free’ constituents in (11.15). The choice of the symmetric order
(indicated by the semicolon) allows one to see each term of the previous
expression as the result of the quantum expectation value of a Hermitian operator
and therefore to attach to it a physical meaning [29, 30, 32]. The first term on the
right hand side of (11.15) can be seen as the contribution to the Casimir–Polder
energy coming from the fluctuations of the vacuum field; the second will be called
the self-reaction term since it arises from the interaction of the dipole with the field
generated by the dipole itself.

11.2.2 Equilibrium Fluctuations

Consider now a configuration at global thermal equilibrium, i.e. when both the
dipole and the field are in a thermal state at temperature T. In this case we can
apply the fluctuation-dissipation theorem [31]. This milestone of the linear
response theory connects the correlation of a generic observable of a system in
thermal equilibrium at temperature T with the imaginary part of the linear sus-
ceptibility which characterizes the response to a weak perturbation. In our case the
theorem holds separately for the dipole and the field and we have [46–48]
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hEfree
i ðr;xÞEfree

j ðr;x0ÞiT ¼ 2p�hdðxþ x0Þ coth
�hx

2kBT

� �
Im ½Gijðr; r;xÞ�; ð11:16Þ

hdfree
i ðxÞdfree

j ðx0ÞiT ¼ 2p�hdðxþ x0Þ coth
�hx

2kBT

� �
Im ½aT

ijðxÞ�; ð11:17Þ

where the symbol h� � �iT define the quantum and the thermal average and, a
$TðxÞ

defines the atomic polarizability operator evaluated at temperature T, according to
(11.10) and (11.25).

hayaþ aayiT ¼ 1þ 2NðxÞ ¼ coth
�hx

2kBT

� �
; ð11:18Þ

where N (x) is the Bose–Einstein distribution. Note the asymptotic limitsðx [ 0Þ

coth
�hx

2kBT

� �
! 1 T � �hx=kB

2kBT
�hx T � �hx=kB

�
ð11:19Þ

in the ‘‘quantum’’ (low-temperature) and ‘‘classical’’ (high-temperature) limits.
The expression given in (11.16) can be directly reconnected with the currents

fluctuating inside the media surrounding the dipole. For these currents Rytov’s
theory [49] predicts a correlation similar to (11.17) where the role of the polar-
izability is now played by the dielectric function [46–48] (see Sect. 11.4). This
picture also lends itself to a natural generalization where the bodies are assumed to
be in ‘‘local thermal equilibrium’’ (see Sect. 11.4.4).

Note that the field correlations are needed at the same position r0: The Green
function is, however, divergent in this limit due to its free-space contribution

G
$
ðr; r0;xÞ ¼ G

$
0ðr; r0;xÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
freespace

þG
$
ðr; r0;xÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
scattered

: ð11:20Þ

The corresponding part of the free energy provides the Lamb shift of the internal
levels of the dipole immersed in the electromagnetic field [37]. This contribution is
position-independent and does not contain any information about the interaction
between the bodies and the dipole. Therefore it can be safely ‘‘hidden’’ in the
(renormalized) energy levels of the atom. The physical information about the
interaction is indeed contained only in the scattered part of the Green function
[36]. If the body happens to be a plane surface, it follows from symmetry that the
result can only depend on the dipole-surface distance L and we can set

G
$
ðr0; r0;xÞ � G

$
ðL;xÞ:

Combining (11.15–11.17), we finally obtain that the free energy of a polarizable
particle at nonzero temperature T has the following general form (Einstein sum-
mation convention)
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FðL; TÞ ¼ � �h

2p

Z1

0

dx coth
�hx

2kBT

� �
Im ½aT

ijðxÞGjiðL;xÞ�: ð11:21Þ

We have used the reality condition (11.11), implying that the imaginary part of
both polarizability and Green tensors are odd in x: Equation (11.21) coincides
with the expression of the atom–surface interaction derived by many authors [23,
24, 27, 32–42]. It is often expressed in an equivalent form using the analyticity of

a
$TðxÞ and G

$
ðL;xÞ in the upper half of the complex frequency plane. Performing a

(Wick) rotation to the imaginary frequency axis yields the so-called Matsubara
expansion [24, 50]

FðL; TÞ ¼ �kBT
X1
n¼0

0aT
ijðinnÞGjiðL; innÞ; ð11:22Þ

where the Matsubara frequencies nn ¼ 2pnkBT=�h arise from the poles of the
hyperbolic cotangent, and the prime on the sum indicates that the n ¼ 0 term

comes with a coefficient 1/2. Both a
$TðinÞ and G

$
ðL; inÞ are real expressions for

n[ 0 because of (11.10).
These considerations conclude our general analysis of the Casimir–Polder

interaction. In the following section we will analyze the particle response function
appearing in the previous formulation, namely the atomic polarizability, and
mention also the case of a nanoparticle.

11.2.3 Polarizability Tensor

The previous results can be used for the interaction of a surface with atoms,
molecules, particles or in general any (small) object that can be described with
good approximation in terms of a electric-dipole polarizability tensor. Here we are
going to review the polarizability of an atom and of a nanoparticle.

11.2.3.1 Atoms

The polarizability tensor is determined by the transition dipole matrix elements
and the resonance frequencies. For an arbitrary atomic state jai it can be written as

aa
ijðxÞ ¼

X
b

dab
i dba

j

�h

2xba

x2
ba � ðxþ i0þÞ2

; ð11:23Þ

where dba
i is the matrix element between the states jbi and jai of the i-th com-

ponent of the electric dipole operator and xba ¼ ðEb � EaÞ=�h the corresponding
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transition frequency. The introduction of an infinitesimal imaginary part shifts the
poles of the expression into the lower part of the complex frequency plane
(xba � i0þ), which is mathematically equivalent to the causality requirement.
The tensorial form of the previous expression allows to take into account a pos-
sible anisotropic response of the atom to an electric field. A simplification can be
obtained averaging over the different levels and directions so that the polarizability
tensor becomes aa

ij ¼ dijaa
iso with the scalar function

aa
isoðxÞ ¼

X
b

jdbaj2

3�h

2xba

x2
ba � ðxþ i0þÞ2

: ð11:24Þ

The polarizability is exactly isotropic when several excited sublevels that are
degenerate in energy are summed over, like the npx;y;z orbitals of the hydrogen-like
series. When the atom is in thermal equilibrium, we have to sum the polarizability
over the states jai with a Boltzmann weight:

aT
ijðxÞ ¼

X
a

e�Ea=kBT

Z
aa

ijðxÞ; ð11:25Þ

where Z is the partition function. In the limit T ! 0; we recover the polarizability
for a ground state atom. For a single pair of levels jai and jbi; this leads to the
following relation between the state-specific and the thermalized polarizabities:

aT
ijðxÞ � aa

ijðxÞ tanh
�hxba

2kBT
: ð11:26Þ

This is mainly meant to illustrate the temperature dependence, otherwise it is a
quite crude approximation. The reason is that the coupling to other levels makes
the polarizabilities aa

ij and ab
ij differ quite a lot. Electronically excited states are

much more polarizable due to their larger electron orbitals.

11.2.3.2 Nanospheres

Let us consider now the case where the atom is replaced by a nanosphere [34, 51,
52]. When the sphere radius R is smaller than the penetration depth and the
radiation wavelength, we can neglect higher order multipoles in the Mie expansion
[53] and consider only the electric and magnetic dipole (the sphere is globally
neutral).

In this long-wavelength limit, the Clausius–Mossotti relation [43, 54] provides
the electric polarizability

asphðxÞ ¼ 4pe0R3eðxÞ � 1
eðxÞ þ 2

; ð11:27Þ

where eðxÞ is the (scalar) dielectric function of the sphere’s material. The nano-
sphere has also a magnetic polarizability that arises because a time-dependent
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magnetic field induces circulating currents (Foucault currents) [43]. This leads to a
diamagnetic response [55]

bsphðxÞ ¼
2p

15l0

Rx
c

� �2

½eðxÞ � 1�R3: ð11:28Þ

Both polarizabilities are isotropic (scalars). For a metallic sphere, the electric
polarizability goes to a positive constant at zero frequency, while the magnetic one
vanishes there and has a negative real part at low frequencies (diamagnetism).

For a qualitative comparison to an atom, one can estimate the oscillator strength
[25], defined by the integral over the imaginary part of the polarizability. For the
atom we have

Z1

0

dx Im aatðxÞ�
pðea0Þ2

�h
and

Z1

0

dx Im batðxÞ�
pl2

B

�h
; ð11:29Þ

where the Bohr radius a0 and the Bohr magneton lB give the overall scaling of the
transition dipole moments. The following dimensionless ratio allows a comparison
between the two:

ðea0Þ2=e0

l2
Bl0

� 1

a2
fs

; ð11:30Þ

where afs ¼ e2=ð4pe0�hcÞ � 1=137 is the fine structure constant. The electric
oscillator strength clearly dominates in the atom.

Let us compare to a metallic nanosphere (gold is often used in experiments) and
assume a Drude model (11.51) for the dielectric function. In terms of the volume
V ¼ 4pR3=3; we get an electric oscillator strength

Z1

0

Im asphðxÞdx ¼ 3
2
e0

xpffiffiffi
3
p V þ O

c
xp

� �
: ð11:31Þ

where xp=
ffiffiffi
3
p

is the resonance frequency of the particle plasmon mode (the pole of
asphðxÞ; (11.27)). This is much larger than for an atom if the nanoparticle radius
satisfies a0 � R� kp; i.e., a few nanometers. The magnetic oscillator strength can
be estimated as

Zxp

0

Im bsphðxÞdx ¼ 2p
3l0

c log ðxp

c
Þ R

kp

� �2

V: ð11:32Þ

where we took xp as a cutoff frequency to make the integral convergent (at higher
frequencies, (11.28) does not apply any more). We have used the plasma wave-
length kp ¼ 2pc=xp(� 100 nm for gold). Similar to an atom, the nanoparticle

356 F. Intravaia et al.



response is dominantly electric, but the ratio of oscillator strengths can be tuned
via the material parameters and the sphere size. The magnetic contribution to the
particle–surface interaction is interesting because it features a quite different
temperature dependence, see Ref. [27].

11.2.4 Non-perturbative Level Shift

In the previous section we saw that the main ingredient to derive the Casimir–
Polder interaction between a particle and an object is the ability to solve for the
dynamics of the joint system particle+electromagnetic field. Previously we limited
ourself to a solution at the first order in the perturbation, implicitly motivated by
the difficulty to solve exactly the dynamics of a multi-level atomic system coupled
to a continuum of bosonic degrees of freedom (e.m. field). Things are different if
we consider the linear coupling between two bosonic systems, i.e. if we describe
the particle as a quantum harmonic oscillator. The linearity of the coupled system
allows for an exact solution of its dynamics and even if the harmonic oscillator
may be in some cases only a poor description of an atom [56], it is a good
representation of a nanoparticle (the resonance frequency being the particle
plasmon frequency). Generally, this approach gives a first qualitative indication for
the physics of the interaction [57–61].

The main idea we follow in this section is based upon a generalization of the
‘‘remarkable formula’’ of Ford, Lewis and O’Connell [62, 63] (see also [57–61]).
According to this formula, the free energy of a one-dimensional oscillator
immersed in black body radiation is

FFLOCðTÞ ¼
1
p

Z1

0

dx f ðx;TÞIm ox ln aðxÞ½ �; ð11:33Þ

where f ðx; TÞ is the free energy per mode,

f ðx; TÞ ¼ kBT log 2 sinh
�hx

2kBT

� �� �
; ð11:34Þ

and aðxÞ is the (generalized) susceptibility of the oscillator derived from (11.39)
below. More precisely, FFLOCðTÞ gives the difference between two free energies:
the oscillator coupled to the radiation field and in equlibrium with it, on the one
hand, and solely the radiation field, on the other. Equation (11.33) is ‘‘remarkable’’
because the only system-relevant information needed here is the susceptibility
function.

In three dimensions, the polarizability becomes a tensor

dðxÞ ¼ a
$ðxÞ � EðxÞ; ð11:35Þ

11 Fluctuation-Induced Forces Between Atoms and Surfaces 357



where EðxÞ is the external electric field. In the case considered by Ford, Lewis,
and O’Connell, there was no need to include a spatial dependence because of the
homogeneity and isotropy of the black body field. We are going to consider this
symmetry to be broken by the presence of some scattering object. As a conse-
quence, the generalized susceptibility tensor becomes position-dependent and

anisotropic:a
$ðx; r0Þ: The spatial dependence is connected with the scattered part

of the Green function and leads both to a position-dependent frequency renor-
malization and a damping rate.

In order to get the expression of a
$ðx; r0Þ; let us consider for simplicity the

equation of motion of an isotropic oscillator with charge q interacting with the e.m.
field near some scattering body (that is described by a dielectric constant). In
frequency space, the (nonrelativistic) dynamics of the oscillator is described by

m �x2dðxÞ þ x2
0dðxÞ

	 

¼ q2Eðr0;xÞ; ð11:36Þ

where we have neglected the coupling with the magnetic field (first order in _d=c).
For the field we have

r�r� Eðr;xÞ � x2

c2
eðx; rÞEðr;xÞ ¼ ixl0jðr;xÞ; ð11:37Þ

where the source current is jðr;xÞ ¼ �ixdðxÞdðr� r0Þ:
The formal exact solution for the operator E can be given in term of the

(electric) Green tensor:

Eðr;xÞ ¼ Efreeðr;xÞ þ G
$
ðr; r0;xÞ � dðxÞ; ð11:38Þ

where the Green tensor is the solution of (11.13) given above. The field Efreeðr;xÞ
is the electromagnetic field we would have without the oscillator and it is con-
nected with the intrinsic fluctuations of the polarization field, or equivalently, of
the currents in the body. Physically (11.38) states that the total electromagnetic
field is given by the field present near the scattering object plus the field generated
by the dipole. Introducing (11.38) in (11.36) we get

�mðx2 � x2
0ÞdðxÞ � q2G

$
ðr0; r0;xÞ � dðxÞ ¼ q2Efreeðr0;xÞ: ð11:39Þ

The Green function G
$
ðr; r0;xÞ solves Eq. (11.37) which describes an electro-

magnetic scattering problem and therefore, it decomposes naturally into a free-

space field G
$

0 (as if the source dipole were isolated in vacuum), and the field

scattered by the body, G
$
: This is at the basis of the splitting in (11.20) discussed

above. The free-space part G
$

0ðr; r0;xÞ is a scalar in the coincidence limit because
of the isotropy of space: schematically, part of the divergence (Re½G0�) can be
reabsorbed into mass renormalization, mx2

0 7!m~x2
0; and part (Im½G0�) gives rise to

dissipation (damping rate cðxÞ[62,63]). Therefore (11.39) can be rewritten as
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�x2 � icðxÞxþ ~x2
0 �

q2

m
G
$
ðr0; r0;xÞ

� �
� dðxÞ ¼ q2

m
Efreeðr0;xÞ: ð11:40Þ

The free electromagnetic field plays here the role of an external force and therefore
the generalized (or ‘‘dressed’’) polarizability tensor is given by

a
$ðx; r0Þ ¼ avðxÞ 1� avðxÞG

$
ðr0; r0;xÞ

� ��1
; ð11:41Þ

where we have defined

avðxÞ ¼
q2

m
�x2 � icðxÞ þ ~x2

0

 ��1
: ð11:42Þ

If Ford, Lewis and O’Connell’s result is generalized to a three-dimensional
oscillator, a trace operation appears before the logarithm in (11.33). Using the

identity tr log a
$ ¼ log det a

$
; one gets

FFLOCðTÞr0 : F FLOCðr0; TÞ ¼
1
p

Z1

0

dx f ðx; TÞIm ox ln det a
$ðx; r0Þ

h i

¼1
p

Z1

0

dx f ðx; TÞIm ox ln avðxÞ½ �

� 1
p

Z1

0

dx f ðx; TÞIm ox ln det 1� avðxÞG
$
ðr0; r0;xÞ

� �h i
:

ð11:43Þ

The first term is distance-independent and coincides with the free energy of an
isolated oscillator in the electromagnetic vacuum. It can be interpreted as a free-
space Lamb shift. The second part of (11.43) is distance-dependent and therefore
gives rise to the Casimir–Polder interaction. In the case of a surface, with the help
of a partial integration, we finally get

FðL; TÞ ¼ �h

2p

Z1

0

dx coth
�hx

2kBT

� �
Im ln det 1� avðxÞG

$
ðL;xÞ

� �h i
: ð11:44Þ

The previous result can be easily generalized to the case of an anisotropic oscil-
lator by just replacing the vacuum polarizability with the respective tensor.

The usual expression (11.21) for the Casimir Polder free energy is recovered by
assuming a weak atom-field interaction. Expanding the logarithm to first order we
get

FðL; TÞ ¼ � �h

2p
Tr

Z1

0

dx coth
�hx

2kBT

� �
Im avðxÞG

$
ðL;xÞ

h i
: ð11:45Þ
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From a scattering point of view, this approximation is equivalent to neglecting the
multiple reflections of the electromagnetic field between oscillator and surface. At
short distance to the surface, these reflections become relevant; the next-order
correction to the van der Waals interaction arising from (11.44) is discussed in
Sect. 12.3.4 of the chapter by DeKieviet et al. in this volume.

Note that although very similar, (11.21) and (11.45) are not identical. (11.21),
applied to an oscillator atom, would have featured the bare polarizability

aðxÞ ¼ q2=m

x2
0 � ðxþ i0þÞ2

; ð11:46Þ

where the infinitesimal imaginary part i0þ ensures causality. Equation (11.45)
involves, on the contrary, the renormalized or vacuum-dressed polarizability
which is causal by default. In other words, it contains a summation over an infinite
subclass of terms in the perturbation series.

Finally, a general remark that connects with the scattering interpretation
of dispersion forces (see Chap. 4 by Lambrecht et al. and Chap. 5 by Rahi et al. in
this volume for detailed discussions on the calculation of the Casimir effect
within the framework of the scattering theory): within the theory of two linearly
coupled linear systems, the susceptibilities involved in the description of
the equilibrium Casimir–Polder interaction are the isolated and dressed ones
(isolated scatters). This means that, within a linear response theory, or equiva-
lently up to the first order in the perturbation theory, the susceptibilities are not
modified by the presence of the other scatters but only dressed by the electro-
magnetic field. In our case, this means that cðxÞ or ~x in (11.44) or (11.45) do not
depend on r0:

11.3 Atoms and a Planar Surface

Let us consider for definiteness the Casimir–Polder potential near a planar surface,
with a distance L between the atom and surface. The Green function is in this case
explicitly known and is given in the following subsection.

11.3.1 Behaviour of the Green function

In the case of a planar surface, the electromagnetic Green tensor can be calculated
analytically, and we present here some of its main features. In our description we
let the atom (source dipole) be on the positive z-axis at a distance L from the
medium that occupies the half space below the xy-plane.
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11.3.1.1 Reflection Coefficients and Material Response

The electric Green tensor G
$
ðr; r0;xÞ is needed for coincident positions r ¼ r0; by

symmetry it is diagonal and invariant under rotations in the xy-plane [36, 46, 64,
65]:

G
$
ðL;xÞ

¼ 1
8pe0

Z1

0

kdk j rTMðx; kÞ þ x2

c2j2
rTEðx; kÞ

� �
½x̂x̂þ ŷŷ�

�
þ2

k2

j2
rTMðx; kÞ̂ẑz

�
e�2jL;

ð11:47Þ

where e0 is the vacuum permittivity, k ¼ jkj is the modulus of the in-plane wave
vector, and x̂x̂; ŷŷ; ẑẑ are the cartesian dyadic products. We consider here a local
and isotropic medium, excluding the regime of the anomalous skin effect [66]. The
Fresnel formulae then give the following reflection coefficients in the TE- and TM-
polarization (also known as s- and p-polarization) [43]:

rTEðx; kÞ ¼ lðxÞj� jm

lðxÞjþ jm
; rTMðx; kÞ ¼ eðxÞj� jm

eðxÞjþ jm
; ð11:48Þ

where �ðxÞ; lðxÞ are the permittivity and permeability of the medium. j; jm are
the propagation constants in vacuum and in the medium, respectively:

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2

r
; jm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � eðxÞlðxÞx

2

c2

r
: ð11:49Þ

The square roots are defined so that Im j; Im jm� 0 and Re j;Re jm	 0: In
particular j is either real or pure imaginary. The corresponding frequencies and
wave vectors define two regions in the ðx; kÞ plane [54]: Evanescent region
x\ck: the electromagnetic field propagates only parallel to the interface and
decays exponentially (j[ 0) in the orthogonal direction. Propagating region
x [ ck: the electromagnetic field also propagates (Re j ¼ 0) in the orthogonal

direction. Note that the magnetic Green tensor H
$

can be obtained from the electric
one by swapping the reflection coefficients [67]:

e0G
$
� 1

l0
H
$
ðrTE $ rTMÞ: ð11:50Þ

All information about the optical properties of the surface is encoded in the
response functions eðxÞ and lðxÞ: For the sake of simplicity, we focus in the
following on a nonmagnetic, metallic medium (lðxÞ ¼ 1) and use the Drude
model [43]:

eðxÞ ¼ 1�
x2

p

xðxþ icÞ; ð11:51Þ
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where xp is the plasma frequency (usually for metals in the UV regime). The
dissipation rate c takes account of all dissipative phenomena (impurities, electron-
phonon scattering, etc.) in the metal [68] and generally c=xp � 1 (� 10�3 for
gold).

11.3.1.2 Distance Dependence of the Green Tensor

The Drude model includes Ohmic dissipation in a very characteristic way, through
the parameter c: This affects the physical length scales of the system (see Ref. [69]
for a review). In our case the relevant ones are the photon wavelength in vacuum
kx and the skin depth in the medium dx: While the first is simply given by

kx ¼
2pc

x
; ð11:52Þ

the second is defined in terms of the low frequency behavior of the dielectric
function

1
dx
¼ x

c
Im

ffiffiffiffiffiffiffiffiffiffi
eðxÞ

p
�

ffiffiffiffiffiffi
x

2D

r
ðfor x� cÞ; ð11:53Þ

where D ¼ cc2=x2
p is the diffusion coefficient for the magnetic field in a medium

with Ohmic damping [43]. The skin depth gives a measure of the penetration of the
electromagnetic field in the medium (� 0:79 lm at 10 GHz for gold). If we have
dx � kx; the dependence of the Green function on L is quite different in the
following three domains: (i) the sub-skin-depth region, L� dx; (ii) the non-
retarded region, dx � L� kx; (iii) the retarded region: kx � L: In zones (i) and
(ii), retardation can be neglected (van-der-Waals zone), while in zone (iii), it leads
to a different power law (Casimir–Polder zone) for the atom–surface interaction.

In the three regimes, different approximations for the reflection coefficients that
appear in (11.47) can be made. In the sub-skin-depth zone [67], we have k�
1=dx � 1=kx and

rTEðx; kÞ � ½eðxÞ � 1� x2

4c2k2
;

rTMðx; kÞ � eðxÞ � 1
eðxÞ þ 1

1þ eðxÞ
eðxÞ þ 1

x2

c2k2

� �
:

ð11:54Þ

At intermediate distances in the non-retarded zone, the wave vector is 1=kx �
k� 1=dx; hence

rTEðx; kÞ � �1þ i
2ffiffiffiffiffiffiffiffiffiffi
eðxÞ

p ck

x
;

rTMðx; kÞ � 1þ i
2ffiffiffiffiffiffiffiffiffiffi
eðxÞ

p x
ck
:

ð11:55Þ
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Finally, in the retarded zone we can consider k� 1=kx � 1=dx; so that

rTEðx; kÞ � �1þ 2ffiffiffiffiffiffiffiffiffiffi
eðxÞ

p ;

rTMðx; kÞ � 1� 2ffiffiffiffiffiffiffiffiffiffi
eðxÞ

p :

ð11:56Þ

Note that the first terms in (11.55, 11.56) correspond to a perfectly reflecting
medium (formally, e!1).

The asymptotics of the Green tensor that correlate to these distance regimes are
obtained by performing the k-integration in (11.47) with the above approximations
for the reflection coefficients. The leading-order results are collected in Table 11.1.
One notes that the zz-component is larger by a factor 2 compared to the xx-and yy-
components. This difference between the normal and parallel dipoles can be
understood by the method of images [43].

The magnetic response for a normally conducting metal in the sub-skin-depth
regime is purely imaginary and scales linearly with the frequency x: the reflected
magnetic field is generated by induction. A significant response to low-frequency
magnetic fields appears for superconductors because of the Meissner–Ochsenfeld
effect [70]. In contrast, the electric response is strong for all conductors because
surface charges screen the electric field efficiently.

The imaginary part of the trace of the Green tensor determines the local mode
density (per frequency) for the electric or magnetic fields [71]. These can be
compared directly after multiplying by e0 (or 1=l0), respectively. As is discussed
in Refs. [69, 71], in the sub-skin-depth regime near a metallic surface, the field
fluctuations are mainly of magnetic nature. This can be traced back to the efficient
screening by surface charges connected with electric fields. Magnetic fields,
however, cross the surface much more easily as surface currents are absent (except
for superconductors). This reveals, to the vacuum outside the metal, the thermally
excited currents within the bulk.

11.3.2 Asymptotic Power Laws

To begin with, let us assume that the particle and the field are both at zero
temperature. The Matsubara series in (11.22) can be replaced by an integral over
imaginary frequencies:

Table 11.1 Magnetic and electric Green tensors at a planar surface

Sub-skin depth Non-retarded Retarded

Gxx 1
32pe0L3 1� 2

eðxÞ

� �
1

32pe0L3 1� 2
eðxÞ

� �
1� i 4pL

kx
� 1

2
4pL
kx

h i2
� �

e4piL=kx

Hxx
il0

32pd2
xL

� l0
32pL3 � l0

32pL3 1� i4pL
kx
� 1

2
4pL
kx

h i2
� �

e4piL=kx

In this case the other elements have the asymptotes Hyy ¼Hxx; Hzz ¼ 2Hxx; and similarly for
Gii: The off-diagonal elements vanish. The expressions are for metals where jeðxÞj � 1:
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FðLÞ ¼ � �h

2p

Z1

0

dn
X

j

ag
jjðinÞGjjðL; inÞ; ð11:57Þ

where we have used the fact that the Green tensor is diagonal. Alternatively one
can get the previous result by taking the limit T ! 0 of (11.21) and performing a
Wick rotation on the imaginary axis. One of the main advantages of this repre-
sentation is that all functions in (11.57) are real. For electric dipole coupling, one
has ag

iiðinÞ;GiiðL; inÞ[ 0; and we can conclude that the (11.57) is a binding energy
and corresponds to an attractive force (see the Chap. 8 by Capasso et al. in this
volume for detailed discussion on repulsive fluctuation-induced forces in liquids).

Along the imaginary axis, the Green tensor is dominated by an exponential
e�2nL=c; see (11.47). This exponential suppresses large values of n and the main
contribution to the integral comes from the region n\c=ð2LÞ: If this value is
smaller than the characteristic frequency, say Xe; of the atom or of the nanoparticle
(the lowest transition in (11.23)), the polarizability can be approximated by its
static value. Assuming an isotropic polarizability we get the Casimir–Polder
asymptote (ke ¼ c=ð2XeÞ)

L� ke : FðLÞCP � �
3�hcag

isoð0Þ
25p2e0L4

; ð11:58Þ

which is the well known expression for the atom–surface Casimir–Polder inter-
action [23]. At short distance the polarizability limits the relevant frequency range
to n.Xe: Therefore for L� ke we can replace Green tensor by its short distance
approximation (see Table 11.1) where it becomes independent of n: We recover
then the van der Waals asymptote

L� ke : FðLÞvdW � �
�h

24p2e0L3

Z1

0

dnag
isoðinÞ: ð11:59Þ

Similar expressions hold for the interaction due to a fluctuating magnetic dipole,
the behaviour becoming more complicated when the distance becomes comparable
to a characteristic skin depth (see (11.53) and Ref. [27]).

If we write the Matsubara frequencies as nn ¼ 2pnc=kT ðn ¼ 0; 1; 2; . . .Þ; the
temperature may be low enough so that the limit kT � L holds. Then all Matsu-
bara frequencies are relevant, and if they are dense enough (kT � ke), the effect of
temperature is negligible. The series in (11.22) is then well approximated by the
integral in (11.57). In the opposite (high-temperature) limit, one has kT � L so
that the exponential behavior of the Green tensor limits the series in (11.22) to its
first term recovering the Lifshitz asymptote

FðL; TÞ � � kBTag
isoð0Þ

16pe0L3
: ð11:60Þ
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We still have an attractive force. Note, however, that this attraction is mainly due
to the classical part of the radiation, as the same result would be obtained with a
polarizable object immersed into the thermal field.

11.4 Beyond Equilibrium

11.4.1 Overview

The theory presented so far has mainly considered the atom, the field, and the
surface to be in a state of global thermal equilibrium, characterized by the same
temperature T. When one moves away from these conditions, the atom–surface
interaction assumes novel features like metastable or unstable states, driven steady
states with a nonzero energy flux etc. We review some of these aspects here, since
they have also appeared in recent experiments (Sect. 11.5). On the theoretical side,
there are a few controversial issues that are currently under investigation [72–74].

We start with atoms prepared in non-thermal states: ground or excited states
that decay by emission or absorption of photons, and with atoms in motion where
frictional forces appear. We then consider field–surface configurations out of
global equilibrium like a surface surrounded by a vacuum chamber at different
temperature.

11.4.2 Atoms in a Given State and Field in Thermal Equilibrium

The generalization of the Casimir–Polder potential to an atom in a definite state jai
can be found, for example, in Wylie and Sipe [36], (4.3, 4.4). The fluctuation–
dissipation theorem for the dipole, (11.17), does not apply, but perturbation theory
is still possible, with the result (summation over repeated indices i, j)

FðL; TÞ ¼ �kBT
X1
n¼0

0aa
ijðinnÞGjiðL; innÞ þ

X
b

NðxbaÞdab
i dba

j Re½GjiðL;xbaÞ�;

ð11:61Þ

where a
$a

is the state-dependent polarizability [36, 75]. The dipole matrix elements
are written dab

i ¼ hajdijbi: The thermal occupation of photon modes (Bose–Ein-
stein distribution) is

NðxÞ ¼ 1

e�hx=kBT � 1
¼ �1� Nð�xÞ: ð11:62Þ

Note the second term in (11.61) that is absent in thermal equilibrium. It involves
the absorption and (stimulated) emission of photons on transitions a! b to other
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quantum states, and the thermal occupation number NðxbaÞ evaluated at the Bohr
frequency �hxba ¼ Eb � Ea: For this reason, it can be called resonant part. The first
term that was also present in equilibrium now features the state-dependent

polarizability tensor a
$aðinnÞ: This is the non-resonant part of the interaction.

For the alkali atoms in their ground state jai ¼ jgi; the Bohr frequencies Ebg are
all positive (visible and near-infrared range) and much larger than typical labo-
ratory temperatures (equivalent to the THz range), hence the thermal occupation
numbers NðxbaÞ are negligibly small. By the same token, the ground-state

polarizability is essentially the same as in thermal equilibrium a
$TðinnÞ because the

thermal occupation of the excited states would come with an exponentially small
Boltzmann weight. The atom–surface interaction is then indistinguishable from its
global equilibrium form and dominated by the non-resonant part.

With suitable laser fields, one can perform the spectroscopy of atom–surface
interaction of excited states jai ¼ jei: It is also possible to prepare excited states
by shining a resonant laser pulse on the atom. In front of a surface, the second term
in (11.61) then plays a dominant role: the transition to the ground state where a
real photon is emitted is accompanied by an energy shift proportional to

Re½G
$
ðL;�xegÞ�: This resonant contribution can be understood in terms of the

radiation reaction of a classical dipole oscillator [36, 76]: one would get the same
result by asking for the frequency shift of an oscillating electric dipole in front of a
surface—a simple interpretation in terms of an image dipole is possible at short
distances (where the k-dependence of the reflection coefficients (11.48) can be
neglected). This term is essentially independent of temperature if the transition
energy Eeg is above kBT :

A more familiar effect for the excited state is spontaneous decay, an example
for a non-stationary situation one may encounter out of thermal equilibrium. We
can interpret the resonant atom–surface interaction as the ‘reactive counterpart’ to
this dissipative process. Indeed, the spontaneous decay rate is modified relative to
its value in free space by the presence of the surface. This can also be calculated in
classical terms, leading to a modification that involves the imaginary part of the

Green tensor G
$
ðL;xegÞ: (The free-space contribution G

$
0 has a finite imaginary

part.) In fact, both the decay rate and the interaction potential can be calculated
from a complex quantity, formally equivalent to an ‘‘effective self-energy’’, of
which (11.61) is the real part in the lowest non-vanishing order of perturbation
theory.

What happens if the Bohr frequencies �hxba become comparable to kBT? This
applies, for example, to optically active vibrational transitions and to atoms in
highly excited states (Rydberg atoms) where the energy levels are closely spaced.
It is obvious from (11.61) that the resonant term is subject to cancellations among
‘‘up’’ (Eb [ Ea) and ‘‘down’’ transitions (Eb0\Ea) with nearly degenerate Bohr
frequencies: the occupation numbers NðxbaÞ and Nðxb0aÞ differ in sign, while

Re½G
$
ðL;xÞ� is even in x: To leading order in the high-temperature limit, the

resonant term becomes
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FresðL; TÞ � kBT

�h

X
b [ a

ReGbaðL;xbaÞ
xba

�
X
b0\a

ReGb0aðL;xab0 Þ
xab0

" #
; ð11:63Þ

GbaðL;xÞ ¼ dab
i dba

j GijðL;xÞ; ð11:64Þ

where the notation b [ a and b\a means summing over states with energies Eb

above or below Ea: This is proportional to the anharmonicity of the atomic level
spectrum around Ea: It vanishes exactly for a harmonic oscillator and reduces
significantly the coefficient linear in temperature in weakly anharmonic regions of
the atomic spectrum [28].

11.4.3 Moving Atoms

An atom that moves in a radiation field can be subject to a frictional force, as
pointed out by Einstein in his seminal 1917 paper on the blackbody spectrum [77].
This force originates from the aberration and the Doppler shift between the field
the atom ‘‘sees’’ in its co-moving frame, and the ‘‘laboratory frame’’. (The latter
frame is actually defined in terms of the thermal distribution function of the
radiation field that is not Lorentz-invariant. Only the field’s vacuum state in free
space is Lorentz-invariant.) In addition, electric and magnetic fields mix under a
Lorentz transformation so that a moving electric dipole also carries a magnetic
moment proportional to d� v where v is the (center-of-mass) velocity of the
dipole (the Röntgen current discussed in Refs. [78–81]).

11.4.3.1 Black Body Friction

The free-space friction force fðv; TÞ is given by [82, 83]:

fðv; TÞ ¼ �v
�h2=kBT

12p2e0c5

Z1

0

dx
x5Im aðxÞ

sinh2ð�hx=2kBTÞ
; ð11:65Þ

where aðxÞ is the polarizability of the atom (in its electronic ground state) and the
approximation of slow motion (first order in v=c) has been made. For atomic
transitions in the visible range, this force is exponentially suppressed by the
Boltzmann factor � e��hxeg=kBT that is winning against the prefactor 1/T in (11.65).
The physics behind this effect is the same as in Doppler cooling in two counter-
propagating laser beams: the friction arises from the frequency shift in the frame
co-moving with the atom that breaks the efficiency of absorbing photons with
counter- and co-propagating momenta. Einstein derived the Maxwell–Boltzmann
distribution for the atomic velocities by balancing this radiative friction with the
momentum recoil in randomly distributed directions as the absorbed photons are
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re-emitted, which leads to Brownian motion in velocity space [77, 84]. Con-
versely, assuming thermal equilibrium and the validity of the Einstein relation
between momentum diffusion and friction, one can calculate the (linear) friction

tensor C
$

in fðvÞ ¼ �C
$

v from the correlation function of the force operator [83,
85]:

C
$
¼ 1

kBT

Zþ1

�1

dshFðt þ sÞ; FðtÞi; ð11:66Þ

where FðtÞ is the force operator in the Heisenberg picture, the operator product is
symmetrized (as in Sect. 11.2.1), and the average h� � �i is taken at (global) thermal
equilibrium. One recognizes in (11.66) the zero-frequency component of the force
correlation spectrum.

The motion of atoms in the radiation field plays a key role for laser cooling of
ultracold gases. Although a discussion of laser-induced forces is beyond the scope
of this chapter, the basic principles can be illustrated by moving away from global
equilibrium and assigning temperatures TA; TF to atom and field. An ultracold gas,
immediately after switching off the lasers, would correspond to TA in the nano-
Kelvin range, while TF ¼ 300 K is a good assumption for the fields in a non-
cryogenic laboratory apparatus. Dedkov and Kyasov calculated the separate con-
tributions from fluctuations of the atomic dipole and the field, respectively. We
follow here Ref. [86]. Qualitatively speaking, the fluctuating dipole experiences a
force when it emits a photon; this force is nonzero and depends on velocity, even
after averaging over all emission directions, because the emission is isotropic only
in the rest frame of the atom. The absorption of photons from the fluctuating field
is accompanied by photon recoil, and here isotropy is broken because the Doppler
shift brings certain directions closer to the resonance frequency. The same prin-
ciple is behind the so-called Doppler cooling in two counterpropagating beams.
The sum of the two contributions takes the form (adapted from (29) of Ref. [86])

v̂ � fðvÞ ¼ � �h

4pe0ccv

Z
d3k

p2
ðk̂ � v̂Þðx0Þ2Im aðx0Þ Nðx; TFÞ � Nðx0; TAÞð Þ ð11:67Þ

x0 ¼ cvðxþ k � vÞ; ð11:68Þ

where cv ¼ ð1� v2=c2Þ�1=2 is the relativistic Lorentz factor, and v̂; k̂ are unit
vectors along the atom’s velocity and the photon momentum. The photon fre-
quency in the ‘‘blackbody frame’’ (field temperature TF) is x ¼ cjkj; and Nðx; TÞ
is the Bose–Einstein distribution for a mode of energy quantum �hx at temperature
T. The term with Nðx; TFÞ gives the force due to absorption of thermal photons,
while Nðx0; TAÞ gives the force due to dipole fluctuations. The absorbed power has
to be calculated in the atom’s rest frame: the energy �hx0 times the photon number
provides the electric field energy density in this frame, and the absorption spec-
trum Im x0aðx0Þ½ � must be evaluated at the Doppler-shifted frequency x0: This
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shifted spectrum also appears in the fluctuation-dissipation theorem (11.17) now
applied locally in the atom’s rest frame, and determines the dipole fluctuations.

At equilibrium and in the non-relativistic limit, the difference between the
Bose–Einstein distributions can be expanded to give

Nðx; TFÞ � Nðx0; TAÞ � �ðk � vÞoxNðx; TÞ ¼ ðk � vÞ �h=kBT

4 sinh2ð�hx=2kBTÞ
;

ð11:69Þ
and performing the angular integration, one recovers (11.65). As another example,
let us consider a ground-state atom (TA ¼ 0) moving in a ‘‘hot’’ field TF [ 0 with a
small velocity. We can then put Nðx0; TAÞ ¼ 0 since for free space photons,
x0[ 0 (the positive-frequency part of the light cone in the ðx; kÞ space is a
Lorentz-invariant set). Expanding in the Doppler shift, performing the angular
integration and making a partial integration, one arrives at

fðvÞ � v
�h

3p2e0c5

Z1

0

dxx2Im agðxÞox½x3Nðx; TFÞ�: ð11:70Þ

Note that the function x3Nðx; TFÞ has a positive (negative) slope for x.kBTF=�h
(xJkBTF=�h), respectively. The velocity-dependent force thus accelerates the
particle, v � f [ 0; if its absorption spectrum has a stronger weight at sub-thermal
frequencies. This may happen for vibrational transitions in molecules and illus-
trates the unusual features that can happen in non-equilibrium situations. Drawing
again the analogy to laser cooling, the radiative acceleration corresponds to the
‘‘anti-cooling’’ set-up where the laser beams have a frequency x [ xeg (‘‘blue
detuning’’). Indeed, we have just found that the peak of the thermal spectrum
occurs on the blue side of the atomic absorption lines. As a rough estimate,
consider the hydrogen atom (mass M) with transition dipoles of the order
jdagj � ea0 (Bohr radius). If the atomic resonances are beyond the peak of the
thermal spectrum, one gets from (11.70) a frictional damping time of the order of

1
CbbðTÞ

¼ Mv

jfðvÞj �
1021s

ðT=300 KÞ5
; ð11:71Þ

which is longer than the age of the Universe. For estimates including resonant
absorption where faster frictional damping may occur, see Ref. [82].

11.4.3.2 Radiative Friction Above a Surface

Near a surface, the fluctuations of the radiation field are distinct from free space,

and are encoded in the surface-dependent Green function G
$
ðL;xÞ; see (11.16,

11.20). In addition, one has to take into account that the available photon momenta
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differ, since also evanescent waves appear whose k-vectors have components
larger than x=c: All these properties can be expressed in terms of the electro-
magnetic Green tensor, assuming the field in thermal equilibrium. Let us consider
for simplicity an atom with an isotropic polarizability tensor aij ¼ adij; moving at a
non-relativistic velocity v. From (118) in Ref. [87], one then gets a friction force

v̂ � fðvÞ ¼ � 2�h

p

Z1

0

dx �oxNðx; TÞð ÞImaðxÞðv̂ � rÞðv � r0Þtr Im G
$
ðr; r0;xÞ;

ð11:72Þ

where the spatial derivatives are taken with respect to the two position variables of
the Green tensor, and r ¼ r0 ¼ rAðtÞ is taken afterwards. This expression neglects
terms of higher order in a that appear in the self-consistent polarizability (11.41); it
can also be found from (25, 26) in Zurita Sanchez et al. [83].

Note that friction is proportional to the local density of field states, encoded in

the imaginary part of the (electric) Green tensor G
$
: If the motion is parallel to a

plane surface, the result only depends on the distance L and is independent of time.
The friction force is comparable in magnitude to the free-space result (11.67) if the
distance L is comparable or larger than the relevant wavelengths c=x: the deriv-

atives in (11.72) are then of the order ðv̂ � rÞðv � r0Þ� jvjðx=cÞ2: At sub-wave-
length distances, the non-retarded approximation for the Green tensor can be
applied (see Table 11.1), and the previous expression becomes of the order of
jvj=L2: The remaining integral is then similar to the temperature-dependent part of
the atom–surface interaction discussed in Sect. 11.4.4.2 below. An order of
magnitude estimate can be found in the non-retarded regime, using the approxi-
mate Green tensor of Table 11.1. For a metallic surface, the conductivity r within
the thermal spectrum is a relevant parameter; a typical value is r=e0� 1016 s�1:
Taking the atomic polarizability of hydrogen as before, one gets a slight increase
relative to the blackbody friction rate (11.71):

CðL; TÞ�CbbðTÞ
k4

T

L4

ce0

Lr
� 10�20s�1ðT=300 KÞ2

ðL=1 lmÞ5
; ð11:73Þ

but the effect is still negligibly small, even at distances in the nm range.
An expression that differs from (11.72) has been found by Scheel and Buhmann

[81] who calculated the radiation force on a moving atom to first order in the
velocity, and at zero temperature. Their analysis provides a splitting into resonant
and non-resonant terms, similar to (11.61). For the ground state, the friction force
is purely non-resonant and contains a contribution from the photonic mode den-
sity, similar to (11.72), and one from the Röntgen interaction that appears by
evaluating the electric field in the frame co-moving with the atom. Another non-
resonant friction force appears due to a velocity-dependent shift in the atomic
resonance frequency, but it vanishes for ground-state atoms and for the motion
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parallel to a planar surface. The remaining friction force becomes in the non-
retarded limit and for a Drude metal

fðvÞ � � v

16pe0L5

X
a [ g

jdagj2xsCa

ðxag þ xsÞ3
; ð11:74Þ

where the sum a [ g is over excited states, the relevant dipole matrix elements are

jdagj2 ¼
P

i jd
ag
i j

2; Ca is the radiative width of the excited state (which also

depends on L), and xs ¼ xp=
ffiffiffi
2
p

the surface plasmon resonance in the non
retarded limit. The fluctuations of the electromagnetic field are calculated here
without taking into account the ‘‘back-action’’ of the atom onto the medium (see
Ref. [85] and the discussion below). In order of magnitude, atomic and plasmon
resonances are often comparable, xag�xs: Taking hydrogen dipole elements, one
thus gets a friction rate

jfðvÞj
Mv

� a2
fs

3
�hxsa4

0

ML5c
� 10�16 s�1

ðL=1lmÞ5
: ð11:75Þ

This is significantly larger than (11.73) and does not depend on temperature.
We briefly mention that the behaviour of friction forces in the limit of zero

temperature (‘‘quantum friction’’) has been the subject of discussion that is still
continuing (see also the Chap. 13 by Dalvit et al. in this volume for further
discussion on quantum friction). An early result of Teodorovich on the friction
force between two plates, linear in v with a nonzero coefficient as T ! 0 [88], has
been challenged by Harris and Schaich [85]. They point out that a charge or
current fluctuation on one metallic plate can only dissipate by exciting electron-
hole pairs in the other plate, but the cross-section for this process vanishes like T2:
This argument does not hold, however, for Ohmic damping arising from impurity
scattering. In addition, Ref. [85] points out that the fluctuations of the atomic
dipole should be calculated with a polarizability that takes into account the
presence of the surface. This self-consistent polarizability has been discussed in
Sect. 11.2.4 and reduces the friction force, in particular at short (non-retarded)
distances. Carrying out the calculation for a metallic surface and in the non-
retarded regime, Harris and Schaich find the scaling

fðvÞ � �v
�ha2

fs

L10

að0Þc
4pe0xs

� �2

; ð11:76Þ

where afs is the fine structure constant, að0Þ is the static polarizability of the atom,
and again xs the surface plasmon frequency. Note the different scaling with dis-
tance L compared to (11.74). Let us consider again L ¼ 100nm� 1 lm for the ease
of comparison, although shorter distances are required to get into the non-retarded
regime. Taking the hydrogen polarizability and a surface plasmon at xs� 1016 s�1;

(11.76) gives a friction rate of the order 10�24 s�1ðL=1 lmÞ�10: This is about eight
(three) orders of magnitude smaller that the estimate (11.75) at a distance L ¼
1 lm (100 nm), respectively.
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11.4.4 Non-equilibrium Field

A radiation field that is not in thermal equilibrium is a quite natural concept since
under many circumstances, an observer is seeing radiation where the Poynting
vector is non-zero (broken isotropy) and where the frequency spectrum is not
given by the (observer’s) temperature. The modelling of these fields can be done at
various levels of accuracy: ‘‘radiative transfer’’ is a well-known example from
astrophysics and from illumination engineering—this theory can be understood as
a kinetic theory for a ‘‘photon gas’’. It is, in its simplest form, not a wave theory
and therefore not applicable to the small length scales (micrometer and below)
where atom–surface interactions are relevant. ‘‘Fluctuation electrodynamics’’ is a
statistical description based on wave optics, developed by the school of S.
M. Rytov [19, 89], and similar to optical coherence theory developed by E. Wolf
and co-workers [25]. The main idea is that the radiation field is generated by
sources whose spectrum is related to the local temperature and the material
parameters of the radiating bodies. The field is calculated by solving the macro-
scopic Maxwell equations, where it is assumed that the matter response can be
treated with linear response theory (medium permittivity or dielectric function
eðx;xÞ and permeability lðx;xÞ). This framework has been used to describe the
quantized electromagnetic field, as discussed by Knöll and Welsch and their co-
workers [90], by the group of Barnett [91], see also the review paper [92]. Another
application is radiative heat transfer and its enhancement between bodies that are
closer than the thermal (Wien) wavelength, as reviewed in [87, 93]. The non-
equilibrium heat flux between two bodies at different temperatures is naturally
calculated from the expectation value of the Poynting vector.

In this section we review the atom–surface interaction in the out-of-equilibrium
configuration similar to the one studied in [94]: the atom is close to a substrate
hold at temperature TS; the whole being enclosed in a ‘‘cell’’ with walls (called
‘‘environment’’) at temperature TE: In the following we will only consider the
electric atom–surface interaction and we will use the zero temperature atomic
electric polarizability. In fact, the electric dipole transitions are mainly in the
visible range and their equivalent in temperature (103�4 K) are not achieved in the
experiment. Therefore the atom does not participate in the thermal exchange and
can be considered in its ground state.

11.4.4.1 Fluctuation Electrodynamics and Radiative Forces

A very simple non-equilibrium situation occurs when an atom is located near a
‘‘heated body’’ whose temperature is larger than its ‘‘surroundings’’ (see Fig. 11.3).
As mentioned above, it is quite obvious that the Poynting vector of the radiation
field does not vanish: there is radiative heat flux from the body into the sur-
rounding space. This flux is accompanied by a radiative force on the atom that
depends on the atomic absorption spectrum, but also on the angular distribution of
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radiated and re-scattered photons. The atom–photon interaction, in this case, does
not derive from the gradient of a potential. The basic concept is that of the
radiation force F; it is given by [43]

FðrÞ ¼ hdirEiðrÞi þ hlirBiðrÞi þ higher multipoles; ð11:77Þ

where we have written out only the contributions from the electric and magnetic
dipole moments and the atom is assumed at rest at position r. (The generalization
to a moving atom leads to the velocity-dependent forces discussed in Sect. 11.4.3.)
As a general rule, the electric dipole is the dominant contribution for atoms whose
absorption lines are in the visible range. (11.77) can be derived by averaging the
Coulomb–Lorentz force over the charge and current distribution in the atom,
assuming that the atomic size is small compared to the scale of variation (wave-
length) of the electromagnetic field. The average h� � �i is taken with respect to the
quantum state of atom and field, and operator products are taken in symmetrized
form.

The radiation force (11.77) can be evaluated with the scheme outlined in Sect.
11.2.1 where the operators d and EðrÞ are split into ‘‘freely fluctuating’’ and
‘‘induced’’ parts. Carrying this through for the contribution of field fluctuations,
leads to an expression of the form

hdind
i rEfree

i ðrÞi ¼
Z

dx
2p

dx0

2p
aijðxÞhEfree

j ðr;xÞrEfree
i ðr;x0Þi; ð11:78Þ

where the spatial gradient of a field autocorrelation function appears. In a non-
equilibrium situation, the fluctuation-dissipation theorem of (11.16) cannot be
applied, and this field correlation must be calculated in a different way. In a similar
way, one gets

hdfree
i rEind

i ðrÞi ¼
Z

dx
2p

dx0

2p
r1Gijðr; r;x0Þhdfree

i ðxÞdfree
j ðx0Þi; ð11:79Þ

Fig. 11.3 Sketch of an atom–surface system with the field being out of thermal equilibrium. TS

is the temperature of the substrate and TE is the temperature of the walls of the cell surrounding
the atom–substrate system. If TS [ TE; there is a nonzero radiative heat flux from the surface into
the surrounding environment
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where the gradient r1Gij is evaluated with respect to the first position coordinate
of the Green function. This term requires some regularization because of the
divergent Green function at coincident positions. The correlation function of the
atomic dipole can be calculated in its stationary state which could be a thermal
equilibrium state or not, as discussed in Sect. 11.4.2. In the case of an ultracold
atomic gas, it is clear that the atom can be at an effectively much lower temper-
ature compared to the macroscopic bodies nearby. This is consistent with the
perturbation theory behind the operator splitting into fluctuating and induced parts.
In global equilibrium, when both fluctuation spectra are given by the fluctuation-
dissipation theorem (11.16, 11.17), it can be seen easily that the force reduces to
the gradient of the equilibrium interaction potential (11.21).

Within Rytov’s fluctuation electrodynamics, the fluctuating field is given in
terms of its sources and the macroscopic Green function. Generalizing (11.14), one
gets

Eiðr;xÞ ¼
Z

d3r0Gijðr; r0;xÞPjðr0;xÞ þmagnetization sources; ð11:80Þ

where we have not written down the contribution from the magnetization field that
can be found in Ref. [39]. The polarization density Pjðr0;xÞ describes the exci-
tations of the material (dipole moment per unit volume). If the material is locally
stationary, the polarization operator averages to zero and its correlations
hPiðr;xÞPjðr0;x0Þi determine the field spectrum

hEiðr;xÞEjðr0;x0Þi ¼
Z

d3xd3x0Gikðr; x;xÞGjlðr0; x0;x0ÞhPkðx;xÞPlðx0;x0Þi;

ð11:81Þ

Making the key assumption of local thermal equilibrium at the temperature T(r),
the source correlations are given by the local version of the fluctuation-dissipation
theorem [89]:

hPiðr;xÞPjðr0;x0Þi ¼ 2p�hdðxþ x0Þdijdðr� r0Þ coth
�hx

2kBTðrÞ

� �
Im ½e0eðr;xÞ�;

ð11:82Þ

where eðr;xÞ is the (dimensionless) dielectric function of the source medium,
giving the polarization response to a local electric field. The assumption of a local
and isotropic (scalar) dielectric function explains the occurrence of the terms
dijdðr� r0Þ; this would not apply to ballistic semiconductors, for example, and to
media with spatial dispersion, in general. The local temperature distribution TðrÞ
should in that case be smooth on the length scale associated with spatial dispersion
(Fermi wavelength, screening length, mean free path). Similar expressions for
random sources are known as ‘‘quasi-homogeneous sources’’ and are studied in the
theory of partially coherent fields [25, Sect. 5.2].
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If we define a polarization spectrum by

SPðr;xÞ ¼ �h coth
�hx

2kBTðrÞ

� �
Im ½e0eðr;xÞ�; ð11:83Þ

the field correlation function (11.81) becomes

hEiðr;xÞEjðr0;x0Þi ¼ 2pdðxþ x0Þ
Z

d3xG
ikðr; x;x0ÞGjkðr0; x;x0ÞSPðx;x0Þ;

ð11:84Þ

where (11.11) has been applied to the Green function. This expression was named
‘‘fluctuation-dissipation theorem of the second kind’’ by Eckhardt [47] who ana-
lyzed carefully its limits of applicability to non-equilibrium situations. Note that
even if the sources are spatially decorrelated (the dðr� r0Þ in (11.82)), the prop-
agation of the field creates spatial coherence, similar to the lab class diffraction
experiment with a coherence slit. The spatial coherence properties of the field
determine the order of magnitude of the field gradient that is relevant for the
radiation force in (11.78).

Let us focus in the following on the correction to the atom–surface force due to
the thermal radiation created by a ‘‘hot body’’. We assume that the atom is in its
ground state and evaluate the dipole fluctuation spectrum in (11.79) at an atomic
temperature TA ¼ 0: To identify the non-equilibrium part of the force, it is useful
to split the field correlation spectrum in (11.78) into its zero-temperature part and a
thermal contribution, using cothð�hx=2kBTÞ ¼ signðxÞ½1þ 2Nðjxj; TÞ� with the
Bose–Einstein distribution Nðx;TÞ: The Rytov currents are constructed in such a
way that at zero temperature, the fluctuation-dissipation theorem (11.16) for the
field is satisfied. This can be achieved by allowing formally for a non-zero
imaginary part Im eðr;xÞ[ 0 everywhere in space [48, 90], or by combining the
radiation of sources located inside a given body and located at infinity [92, 95].
The two terms arising from dipole and field fluctuations then combine into a single
expression where one recognizes the gradient of the Casimir–Polder potential
Equation (11.21). This is discussed in detail in Refs. [33, 96]. The remaining part
of the atom–surface force that depends on the body temperature is discussed now.

11.4.4.2 Radiation Force Near a Hot Body

Let us assume that the body has a homogeneous temperature TðxÞ ¼ TS and a
spatially constant dielectric function. Using (11.84) and subtracting the T ¼ 0
limit, the spectrum of the non-equilibrium radiation (subscript ‘neq’) can then be
expressed by the quantity

hEiðr;xÞEjðr0;x0Þineq ¼ 2pdðxþ x0ÞNðjxj; TSÞ�hSijðr; r0;xÞ; ð11:85Þ
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Sijðr; r0;xÞ ¼ Im ½e0eðjxjÞ�
Z

S

d3xG
ikðr; x;xÞGjkðr0; x;xÞ; ð11:86Þ

where the space integral is over the volume of the body. The tensor Sijðr; r0;xÞ
captures the material composition of the body and its geometry relative to the
observation points.

Referring to the force due to field fluctuations in (11.78), let us assume for
simplicity that the atomic polarizability is isotropic, aijðxÞ ¼ dijaðxÞ: We combine
the integrand over positive and negative frequencies to isolate dispersive and
absorptive contributions (x [ 0)

a
ðxÞr2Siiðr; r;xÞ þ ðx 7!�xÞ
¼ Re½aðxÞ�rr½Siiðr; r;xÞ� þ 2Im½aðxÞ�Im½r2Siiðr; r;xÞ�;

ð11:87Þ

where r2 is the gradient with respect to the second coordinate of Sij; while rr

differentiates both coordinates. This form highlights that the non-equilibrium force
separates in two [97, 98] contributions that are familiar in laser cooling [99, 100]: a
dipole force equal to the gradient of the electric energy density (proportional to
Siiðr; r;xÞ	 0). This is proportional to the real part of a and can be interpreted as
the polarization energy of the atom in the thermal radiation field. The second
term in (11.87) gives rise to radiation pressure, it is generally1 proportional to
the atomic absorption spectrum and the phase gradient of the field. The phase
gradient can be identified with the local momentum of the emitted photons. By
inspection of (11.86) for a planar surface, one indeed confirms that the radiation
pressure force pushes the atom away from the thermal source. An illustration is
given in Fig. 11.4 for a nanoparticle above a surface, both made from semicon-
ductor. The dielectric function eðxÞ is of Lorentz–Drude form and uses parameters
for SiC (see Ref. [33]). The arrows mark the resonance frequencies of transverse
bulk phonon polaritons xT and of the phonon polariton modes of surface (x1) and
particle (x2).

The radiation pressure force is quite difficult to observe with atomic transitions
in the visible range because the peaks of the absorption spectrum are multiplied by
the exponentially small Bose–Einstein factor Nðxag; TSÞ; even if the body tem-
perature reaches the melting point. Alternative settings suggest polar molecules or
Rydberg atoms [28] with lower transition energies. In addition, some experiments
are only sensitive to force gradients (see Sect. 11.5), and it can be shown that the
radiation pressure above a planar surface (homogeneous temperature, infinite
lateral size) does not change with distance.

1 Note that when the dressed polarizability is used instead of the bare one, the polarizability has
an imaginary part even in the absence of absorption (see discussion at the end of Sect. 11.2.4).
This is equivalent to include the effects of the ‘‘radiative reaction’’ in the dynamic of the dipole
[97, 101, 102] as required by the conservation of energy and the optical theorem.
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For the evaluation of the dipole force, the same argument related to the field
temperature can be applied so that the atomic polarizability in (11.87) is well
approximated by its static value, Re aðxÞ � að0Þ: We thus find

Fdip
neqðr; TS; TE ¼ 0Þ ¼ �rUdip

neqðr; TS; TE ¼ 0Þ; ð11:88Þ

Udip
neqðr; TS; TE ¼ 0Þ ¼ �að0Þ

Z1

0

dx
2p

�hNðx; TSÞSiiðr; r;xÞ: ð11:89Þ

11.4.4.3 General Non-Equilibrium Configuration and Asymptotic
Behaviours

In the general case both TS and TE can be different from zero [94]. The total force
will be the sum of Fdip

neqðr; TS; TE ¼ 0Þ given in the previous expression and of

Fdip
neqðr; TS ¼ 0; TEÞ ¼ Fdip

eq ðr; TEÞ � Fdip
neqðr; TE;TS ¼ 0Þ; ð11:90Þ

that is the difference between thermal force at equilibrium at the temperature TE

and the force in (11.88) and (11.89) with TS and TE swapped. An illustration of the
resulting force is given in Fig. 11.4 (right) for a planar surface. A large-distance
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Fig. 11.4 Left spectrum of thermal radiation pressure force exerted on a small spherical particle
above a planar substrate (positive = repulsive, does not depend on distance). The arrows mark the
substrate and particle resonances at Re e�1ðxTÞ ¼ 0 (bulk phonon polariton) and Re eðx1;2Þ ¼
�1;�2 (surface and particle phonon polariton). The force spectrum is given by �hNðx;TSÞ times
the second term in (11.87), and normalized to ð16=3Þ�hkLðkLaÞ3Nðx; TSÞ where a is the particle
radius and kL ¼ xL=c the wavenumber of the longitudinal bulk polariton (ReeðxLÞ ¼ 0). Right
theoretical calculation of the atom–surface force, in and out of thermal equilibrium, taken from
Ref. [94], Fig. 11.2. The atom is Rubidium 87 in its electronic ground state, the surface is made
of sapphire (SiO2). Note the variation with temperature(s) of the non-equilibrium force, both in
magnitude and in sign. A negative sign corresponds to an attractive interaction
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asymptote of the non-equilibrium interaction can be derived in the form [94, 103,
104]

L� kTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð0Þ � 1

p : Udip
neqðL; TS; TEÞ � �

p
12

að0Þ eð0Þ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð0Þ � 1

p k2
BðT2

S � T2
EÞ

�hcL2
;

ð11:91Þ

where eð0Þ\1 is the static dielectric constant. The previous expression is valid
for dielectric substrates, see Ref. [94] for Drude metals. For TS ¼ TE; this formula
vanishes, and one ends with the ‘‘global equilibrium’’ result of (11.61).

Expression (11.91) shows that the configuration out of thermal equilibrium
presents new features with respect to the equilibrium force. Indeed the force scales
as the difference of the square of the temperatures and can be attractive or
repulsive. For TE [ TS the force changes sign, going from attractive at small
distance to repulsive at large distance (i.e. featuring a unstable equilibrium posi-
tion in between), and it decays slower than the equilibrium configuration (/ L�4),
leading therefore to a stronger force. This new feature was important for first
measurement of the thermal component of the surface-atom surface (see next
section). Moreover, when a gas of atoms is placed in front of the surface, the non-
equilibrium interaction can lead to interesting non-additive effects [96, 105].

11.5 Measurements of the Atom–Surface
Force with Cold Atoms

11.5.1 Overview

We do not discuss here the regime of distances comparable to the atomic scale
where atomic beams are diffracted and reveal the crystallography of the atomic
structure of the surface. We consider also that the atoms are kept away even from
being physisorbed in the van der Waals well (a few nanometers above the surface).
One is then limited to distances above approximately one micron (otherwise the
attractive forces are difficult to balance by other means), but can take advantage of
the techniques of laser cooling and micromanipulation and use even chemically
very reactive atoms like the alkalis.

The first attempts to measure atom–surface interactions in this context go back
to the sixties, using atomic beam set-ups. In the last 20 years, technological
improvements have achieved the sensitivity required to detect with good accuracy
and precision tiny forces. As examples, we mention the exquisite control over
atomic beams provided by laser cooling [106, 107], spin echo techniques that
reveal the quantum reflection of metastable noble gas beams [108, 109] (see also
the Chap. 12 by DeKieviet et al. for detailed discussions on this topic), or the
trapping of an ultracold laser-cooled gas in atom chip devices [5, 110]. In this

378 F. Intravaia et al.



section we will briefly review some of the experiments which exploited cold atoms
in order to investigate the Casimir–Polder force.

By using different techniques, it has been possible to measure the atom–surface
interaction (atomic level shift, potential, force, or force gradient, depending on the
cases) both at small (0:1 lm\L\kopt � 0:5 lm) and large (L [ 1 lm) distances.
Because the interaction rapidly drops as the atom-surface separation becomes
larger, the small-distance (van der Waals–London, (11.59)) regime at L\kopt is
somewhat easier to detect. Recall that in this limit, only the vacuum fluctuation of
electromagnetic field are relevant, and retardation can be ignored. More recent
experiments explored the weaker interaction in the Casimir–Polder regime (11.58),
kopt\L\kT ; where retardation effects are relevant, but thermal fluctuations still
negligible. Also the Lifshitz–Keesom regime at L [ kT has been explored, where
thermal fluctuations are dominant [see (11.60)]. The theory of Dzyaloshinskii,
Lifshitz, and Pitaevski (DLP, [19,Chap.VIII]) encompasses the three regimes with
crossovers that are illustrated in Fig. 11.1 for a Rubidium atom and a room
temperature sapphire surface.

11.5.2 From van der Waals to Casimir–Polder: Equilibrium

Typically, experiments have been performed at room temperature, and at thermal
equilibrium, and used several techniques to measure the interaction, usually of
mechanical nature.

The van der Waals–London regime has been first explored by its effect on the
deflection of an atomic beam passing close to a substrate [111–114]. Such kind of
experiments were almost qualitative, and hardly in agreement with the theory.
Subsequently, more accurate measurements of the atom–surface interaction in this
regime have been done by using dielectric surfaces ‘‘coated’’ with an evanescent
laser wave that repels the atoms (atom mirrors, [115]), by atom diffraction from
transmission gratings [116, 117], by quantum reflection [108, 109], and by spec-
troscopic studies [106, 118].

The Casimir–Polder regime, where vacuum fluctuations of the electromagnetic
field and the finite speed of light are relevant, was first studied experimentally in
[107].2 Here the force has been measured through an atomic beam deflection
technique, which consists in letting an atomic beam (Na atoms in their ground
state) pass across in a cavity made by two walls (gold plates), as one can see in
Fig. 11.5. The atoms of the beam are drawn by the Casimir–Polder force to the
walls, whose intensity depends on the atomic position within the cavity. Part of the
atoms are deflected during their path and stick to the cavity walls without reaching

2 Reprinted figures with permission from C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar,
and E. A. Hinds, Phys. Rev.Lett. 70, 560 (1993). Copyright (1993) by the American Physical
Society.
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the end of the cavity. Only few atoms will pass the whole cavity, and their flux is
measured and related to the atom–surface interaction in the cavity. Such a mea-
surement is shown in Fig. 11.5, where the theoretical curves are based on atomic
trajectories in the atom–surface potential that is assumed to be either of van der
Waals-London or of Casimir–Polder form. The data are clearly consistent with the
CP interaction, hence retardation already plays a role for typical distances in the
range of 500 nm:

Subsequent measurements of the Casimir–Polder force have been done, among
others, using the phenomenon of quantum reflection of ultra-cold atomic beams
from a solid surface [108, 109]. In the experiment, a collimated atomic beam of
metastable Neon atoms impinges on a surface (made of Silicon or some glass) at a
glancing angle (very small velocity normal to the surface). In this regime, the de
Broglie wave of the incident atoms must adapt its wavelength to the distance-
dependent potential, and fails to do so because the potential changes too rapidly on
the scale of the atomic wavelength. This failure forces the wave to be reflected, a
quantum effect that would not occur in an otherwise attractive potential. In the
limit of zero normal velocity (infinite wavelength), the reflection probability must
reach 100%. The variation with velocity depends on the shape of the atom–surface
potential and reveals retardation effects [119, 120]. In Fig. 11.6 is shown the
measurement of quantum reflection performed by Shimizu [108].3 In this case, the
accuracy was not high enough to distinguish reliably between theoretical predic-
tions. More recent data are shown in Fig. 12.5 of the chapter by DeKieviet et al. in
this volume.

Fig. 11.5 (left) Scheme of the experiment of Sukenik and al, taken from Ref. [107]. An atomic
beam enters a micron-sized gold cavity, and the flux of atoms emerging the cavity is detected and
related to the atom–surface potential inside the cavity. (right) Measurement of the atom–surface
interaction in the Casimir–Polder regime, in the experiment of [107], taken from the same paper.
The opacity is proportional to the number of atoms which do not exit from the cavity, and is
related to the atom–surface potential. The solid lines are the theoretical prediction based on: full
DLP potential (a), van der Waals–London (short-distance) potential (b), and no atom–surface
potential (c)

3 Reprinted figure with permission from F. Shimizu, Phys. Rev. Lett. 86, 987 (2001). Copyright
(2001) by the American Physical Society.
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The crossover between the van der Waals and Casimir–Polder regimes has been
recently measured by the group of C. Zimmermann and S. Slama [121], using the
reflection of a cloud of ultracold atoms at an evanescent wave atomic mirror. This
experiment improves previous data obtained by the A. Aspect group [115] into the
crossover region. The data are shown in Fig. 11.7 where ‘‘vdW’’ and ‘‘ret’’ label
the asymptotes van der Waals and Casimir–Polder potentials, respectively.4 The
full calculation (DLP theory) is labelled ‘‘trans’’ and show some deviation from
both asymptotes in the crossover region. The data (shown with error bars) are
clearly favoring the full (DPL) theory.

Fig. 11.6 Reflectivity as a
function of the normal
incident velocity of Ne*
atoms on a Si(1,0,0) surface,
taken from Fig. 3 of [108].
The experimental points
(squares) are plotted together
with a theoretical line
calculated using the
approximate expression
VCP ¼ �C4=½ðd þ aÞd3�;
where C4 ¼ 6:8 10�56Jm4

and a is a fitting parameter
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Fig. 11.7 Measured and
theoretical prediction for the
Casimir–Polder interaction,
adapted from Fig. 3 of [121].
In the large figure theoretical
calculation: asymptotic van
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Casimir–Polder (label ‘‘ret’’),
and full theoretical curve
(label ‘‘trans’’). In the inset,
measured data points are
included: statistical and
systematic errors are
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4 Reprinted figure with permission from H. Bender, P.W. Courteille, C. Marzok, C.
Zimmermann, and S. Slama, Phys. Rev. Lett. 104, 083201 (2010). Copyright (2010) by the
American Physical Society.
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11.5.3 The Experiments of the E. Cornell Group

11.5.3.1 Lifshitz Regime

The atom–surface interaction in the Lifshitz regime has been explored in
E. Cornell’s group [5, 122]. Here a quantum degenerate gas in the Bose–Einstein
condensed phase has been used as local sensor to measure the atom–surface
interaction, similar to the work in V. Vuletić’s group where smaller distances were
involved [110]. The Cornell experiments use a Bose–Einstein condensate (BEC) of
a few 105 87Rb atoms that are harmonically trapped at a frequency xtrap: The trap
is moved towards the surface of a sapphire substrate, as illustrated in Fig. 11.8.

Center-of-mass (dipole) oscillations of the trapped gas are then excited in the
direction normal to the surface. In absence of atom–surface interaction, the fre-
quency of the center-of-mass oscillation would correspond to the frequency of the
trap: xcm ¼ xtrap: Close to the substrate, the atom–surface potential changes the
effective trap frequency, shifting the center-of-mass frequency by a quantity c ¼
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Fig. 11.8 (left) Scheme illustrating the experimental configuration in the E. Cornell group, taken
from Fig. 1 of [122]. Typical arrangement of the condensate close to the surface. The cloud is
formed by a few hundred thousand Rubidium 87 atoms, its axial length is � 100 lm: The surface
is made of fused silica. The coordinate axes and the direction of gravity are indicated (a). Typical
data showing the center-of-mass (dipole) oscillation (x-direction normal to the surface). This is
obtained after holding the BEC near the surface and then shifting it rapidly away from the
surface; the ‘‘expanded position’’ is proportional to the velocity component vx: (right) Measured
and theoretical frequency of the BEC center-of-mass motion, relative to the nominal trap
frequency xtrap and normalized as cðxÞ ¼ ðxcm � xtrapÞ=xtrap: Each data point represents a single
measurement, with both statistical and systematic errors. The mean oscillation amplitude is
� 2:06lm; and the typical size of the BEC (Thomas–Fermi radius) in the oscillation direction is
� 2:40lm. Theory lines, calculated using theory from [124], consider the full atom- surface
potential: T ¼ 0 K (dashed line), T ¼ 300 K (solid line) and T ¼ 600 K (dotted line). No
adjustable parameters have been used. The result of the van der Waals–London potential has been
added (dash-dotted line) (b)
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ðxcm � xtrapÞ=xtrap: The value of c is related to the atom–surface force [4] and for
small oscillation amplitudes we have:

x2
cm ¼ x2

trap þ
1
m

ZRz

�Rz

dz nz
0ðzÞ o

2
zFðzÞ; ð11:92Þ

where m is the atomic mass, FðzÞ is the atom–surface free energy in (11.21) (z is
the direction normal to the surface), and nz

0ðzÞ is the xy-integrated unperturbed
atom density profile [4] that takes into account the finite size of the gas cloud. In
the Thomas–Fermi approximation

nz
0ðzÞ ¼

15
16Rz
½1� z

Rz

� �2

�2; ð11:93Þ

where Rz (typically of few microns) is the cloud radius along z, which depends on
the chemical potential. In the comparison with the experiment, non-linear effects
due to large oscillation amplitudes [4] may become relevant [122]. The experiment
of Ref. [122] was performed at room temperature and succeeded in measuring the
atom–surface interaction for the first time up to distances L � 7 lm (see Fig. 11.8).
Although the relative frequency shift in (11.89) is only � 10�4; the damping of
this dipole oscillator is so weak that its phase can be measured even after hundreds
of periods, (see Fig. 11.8 (left)). The same technique has been recently proposed to
test the interaction between an atom and a non-planar surface [124, 125].

11.5.3.2 Temperature Dependence and Non-Equilibrium Force

The experiment of Ref. [122] did not reach the accuracy to discriminate between
the theoretical predictions at T ¼ 0 K and the T ¼ 300 K; and a clear evidence of
thermal effects was still missing. In this experiment there was no room to increase
the temperature of the surface: at high temperatures some atoms thermally desorb
from the walls of the cell, the vacuum in the cell degrades, resulting in the
impossibility to produce a BEC. To overcome this experimental limitation a new
configuration was studied, where only the surface temperature was increased: the
quality of the vacuum was not affected because of the relatively small size of the
substrate. The non-equilibrium theory of atom–surface interactions in this system
was developed in Refs. [94, 96, 104, 105, 126], as outlined in Sect. 11.4. It predicts
new qualitative and quantitative effects with respect to global equilibrium that are
illustrated in Fig. 11.4 (right). The experimental measurement has been achieved
in 2007 [5] and remains up to now the only one that has detected thermal effects of
the electromagnetic dispersion interactions in this range of distances. A sketch of
the experimental apparatus is given in Fig. 11.9, the experimental results in
Fig. 11.10.
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11.5.3.3 Outlook

Precision measurements of the atom–surface interaction may shed light on the
ongoing discussion about the temperature dependence of dispersion interactions
with media that show absorption, like any conducting medium. It has been pointed
out by Klimchitskaya and Mostepanenko [127] that if the small, but nonzero
conductivity of the glass surface in the Cornell experiment [5, 122] had been taken
into account, the Lifshitz–Keesom tail would involve an infinite static dielectric
function, and hence deviate from a dielectric medium where 1\eð0Þ\1: This
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Fig. 11.10 Measured and theoretical frequency shift c of the center-of-mass frequency xcm for a
trapped atomic BEC (87Rb atoms) close to surface (fused silica), in a system in and out of thermal
equilibrium. The figure is taken from Fig. 4 of [5]. a The figure shows three sets of data and
accompanying theoretical curves with no adjustable parameters for various substrate tempera-
tures. Data are shown for different substrate temperatures: TS ¼ 310 K (squares), TS ¼ 479 K
(circles), and TS ¼ 605 K (triangles). The environment temperature is maintained at TE ¼ 310 K.
The error bars represent the total uncertainty (statistical and systematic) of the measurement.
b Average values cx over the trap center–surface separations of 7.0, 7.5, and 8.0 lm; plotted
versus substrate temperature. It is evident a clear increase in strength of the atom–surface
interaction for elevated temperatures. The solid theory curve represents the non-equilibrium
effect, while the dash–dotted theory curve represents the case of equal temperatures

Fig. 11.9 Scheme of the experiment
of Ref. [5] (from which the figure is
taken), where atom–surface interac-
tions out of thermal equilibrium have
been measured
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theoretical prediction would also be inconsistent with the data. This issue is related
to similar problems that arise in the macroscopic Casimir interaction, see other
chapters in this volume and Refs. [128–130] for reviews. In the atom–surface case,
Pitaevskii has pointed out that a smooth crossover from a metal to a dielectric is
obtained within a non-local description that takes into account electric screening in
the surface (wave-vector-dependent dielectric function eðk;xÞ) [131] which Ref.
[127] did not include.

New interesting experimental proposals have been presented in order to mea-
sure the atom–surface force with higher accuracy, essentially based on interfero-
metric techniques. All of them deal with atoms trapped in a periodic lattice made
by laser beams (‘‘optical lattice’’ [132, 133]), and placed close to a substrate.
Gradients in the potential across the lattice can be detected with coherent super-
position states of atoms delocalized over adjacent lattice sites [7]. These gradients
also induce Bloch oscillations through the reciprocal space of the lattice: if �hq is
the width of the Brillouin zone, the period sB of the Bloch oscillations is [6]

1
sB
¼ �oLU

�hq
: ð11:94Þ

where the average (overbar) is over the cloud size in the lattice. The atom–surface
interaction would, in fact, shift the Bloch period by a relative amount of
10�4. . .10�3 if the main force is gravity and the atoms are at a distance L � 5 lm

[105]. Distance-dependent shifts in atomic clock frequencies have also been
proposed [134]. They arise from the differential energy shift of the two atomic
states which are related to the difference in polarizabilities. Finally, a corrugated
surface produces a periodic Casimir–Polder potential that manifests itself by a
band gap in the dispersion relation of the elementary excitations of the BEC
(Bogoliubov modes). The spectrum of these modes is characterized by a dynamic
structure factor that can be detected by the Bragg scattering of a pair of laser
beams [135].

11.6 Conclusion

In this chapter, we have outlined a quantum theory of fluctuations, focussing on
‘‘discrete systems’’ like atoms or nanoparticles and on a quantized field. As atoms
interact with the electromagnetic field, the fluctuations of the two entities get
correlated, and this becomes manifest in forces, energy shifts, and damping rates.
We have presented a formalism where these radiative interactions are described by
response functions (polarizabilities, Green functions), and thermodynamics enters
via the fluctuation-dissipation theorem, a powerful generalization of the Einstein
relation familiar from Brownian motion. These interactions have been explored
recently over an extended range of distances between atoms and macroscopic
bodies, using experimental techniques from laser cooling and ultracold atom
manipulation. Atom-surface interactions are setting now non-trivial limitations for
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the stability of micro-traps and nano-devices, as their dimensions are reduced.
Non-equilibrium situations (‘‘cold atoms near a hot body’’) are quite common in
these settings, and we have outlined in this chapter the corresponding fluctuation
theory based on local thermodynamic equilibrium. For atom–surface interactions,
this theory is relatively simple to formulate since to a good approximation, atoms
are ‘‘probe particles’’ that do not affect the quantum state of the field (and of the
macroscopic surroundings). Still, subtle issues have emerged in controversies, both
long standing and more recent, that are related to the choice of placing the ‘‘cut’’
between ‘‘system’’ (dynamically responding) and ‘‘bath’’ (in thermodynamic
equilibrium). We anticipate that experimental and theoretical advances in the near
future will help to resolve these issues within the challenging realm of open
quantum systems.
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Chapter 12
Modern Experiments on Atom-Surface
Casimir Physics

Maarten DeKieviet, Ulrich D. Jentschura and Grzegorz Łach

Abstract In this chapter we review past and current experimental approaches to
measuring the long-range interaction between atoms and surfaces, the so-called
Casimir-Polder force. These experiments demonstrate the importance of going
beyond the perfect conductor approximation and stipulate the relevance of the
Dzyaloshinskii-Lifshitz-Pitaevskii theory. We discuss recent generalizations of
that theory, that include higher multipole polarizabilities, and present a list of
additional effects, that may become important in future Casimir-Polder experi-
ments. Among the latter, we see great potential for spectroscopic techniques, atom
interferometry, and the manipulation of ultra-cold quantum matter (e.g. BEC) near
surfaces. We address approaches based on quantum reflection and discuss the
atomic beam spin-echo experiment as a particular example. Finally, some of the
advantages of Casimir-Polder techniques in comparison to Casimir force mea-
surements between macroscopic bodies are presented.

12.1 Introduction

In this chapter we will be dealing with experimental aspects of the Casimir-Polder
force. (See Chap. 11 by Intravaia et al. in this volume for additional discussions
about the theoretical aspects of the Casimir-Polder force.) Although no strict
criterion can be implied to distinguish between the Casimir and the Casimir-Polder
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effect, it is common use to describe the interaction between two macroscopic,
polarizable (neutral and nonmagnetic) bodies due to the exchange of virtual
photons as Casimir interactions. In contrast, Casimir-Polder effects should involve
at least one microscopic, polarizable body, typically an atom or molecule.
Although the transition from Casimir to Casimir-Polder physics is a continuous
one,1 the distinction goes back to the seminal 1948 paper by Casimir and Polder
[1]. Herein, the authors discuss the influence of retardation on the London-van der
Waals forces. In particular, they derive the long-distance behavior of the quantum
electrodynamic interaction between an atom and a perfectly conducting surface
and that between two atoms. The works by Casimir and Casimir and Polder
address the fact that the mutually induced polarization between two neighboring
objects may be delayed as a consequence of the finiteness of the velocity of light.
The Casimir and the Casimir-Polder forces could thus semiclassically be termed
long-range retarded dispersion van der Waals forces. Indisputably the two 1948
papers by Casimir and Casimir and Polder mark the beginning of a whole new
branch of research addressing fundamental questions about quantum field theory in
general and the structure of the vacuum in particular. The concepts developed in
1948 are now being used in order to describe a rich field of physics, and have been
supplemented by a variety of methods to address also practically important areas
of applications. Especially with the rise of nanotechnology, there is a growing need
for a quantitative understanding of this interaction and experimental tests are
indispensable.

12.2 The History of Casimir-Polder Experiments

Before we turn to modern aspects of Casimir-Polder physics it is useful to review
some of the developments that led us here. The correct explanation for the non-
retarded dispersive van der Waals interaction between two neutral, but polarizable
bodies was possible only after quantum mechanics was properly established. Using
a perturbative approach, London showed in 1930 [2] for the first time that the
above mentioned interaction energy is approximately given by

VLondonðzÞ � �
3�hx0aA

1 aB
1

26p2e2
0z6

ð12:1Þ

where aA
1 and aB

1 are the static dipole polarizabilities of atoms A and B, respec-
tively. x0 is the dominant electronic transition frequency and z is the distance
between the objects. Experiments on colloidal suspensions in the 1940s by Verwey
and Overbeek [3] showed that London’s interaction was not correct for large
distances. Motivated by this disagreement, Casimir and Polder were the first in

1 It is in fact a useful and instructive exercise to derive the latter from the former by simple
dilution.
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1948 to consider retardation effects on the van der Waals forces. They showed that
in the retarded regime the van der Waals interaction potential between two
identical atoms is given by

VretardðzÞ ¼ �
23�hcaA

1 aB
1

26p3e2
0z7

: ð12:2Þ

The reason is that, at larger separations, the time needed to exchange infor-
mation on the momentary dipolar states between the two objects may become
comparable to or larger than the typical oscillation period of the fluctuating dipole.
The length scale at which this happens can be expressed in terms of a reduced
wavelength �k of the lowest allowed atomic transition that relates to the transition
frequency x0 (or wavelength k) and the speed of light c

z� c

x0
¼ k

2p
¼ �k: ð12:3Þ

The onset of retardation is thus a property of the system. In their paper, Casimir
and Polder also showed that the retarded van der Waals interaction potential
between an atom and a perfectly conducting wall falls at large distances as 1=z4, in
contrast to the result obtained in the short-distance regime (non-retarded regime),
where it is proportional to 1=z3. They derived a complete interaction potential
valid also for intermediate distances. By the use of the dynamic polarizability of
the atom aðixÞ the Casimir and Polder result can be rewritten as

V1ðzÞ ¼ � �h

ð4pÞ2e0z3

Z1

0

dxa1ðixÞ
�

1þ 2
xz

c
þ 2
�xz

c

�2
�

e�2xz=c: ð12:4Þ

Its short-range limit, equivalent to the nonrelativistic approximation (c!1)
reproduces the van der Waals result for the atom-surface interaction energy

V1ðzÞ ¼z!0� �h

ð4pÞ2e0z3

Z1

0

dxa1ðixÞ: ð12:5Þ

The long-distance limit for the perfect conductor case is especially important
and has become the signature for the Casimir-Polder force

V1ðzÞ ¼z!1� 3�hcað0Þ
25p2e0z4

: ð12:6Þ

In the 1960s, Lifshitz and collaborators developed a general theory of van der
Waals forces [4] and extended the result of Casimir and Polder to arbitrary solids.
(See also the Chap. 2 by Pitaevskii in this volume for additional discussions about
the Lifshitz theory.) Their continuum theory is valid for both dielectrics and
semiconductors, and for conductors, as long as their electromagnetic properties
can be described by a local eðxÞ. The result for a perfect conductor is recovered by

12 Modern Experiments on Atom-Surface Casimir Physics 395



taking the limit of infinite permittivity: eðxÞ ! 1. Lifshitz [4] computed the
interaction energy between an atom and a realistic material, described by its
frequency dependent permittivity evaluated for imaginary frequencies eðixÞ. His
result gives the dominant contribution for large atom-surface distances, and reads

VðzÞ ¼ � 2�h

ð4pÞ2e0c3

Z1

0

dxx3a1ðixÞ
Z1

1

dne�2nxz=cHðn; eðixÞÞ; ð12:7Þ

where the Hðn; eÞ function is defined as

Hðn; eÞ ¼ ð1� 2n2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ e� 1

p
� enffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ e� 1
p

þ en
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ e� 1

p
� nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ e� 1
p

þ n
: ð12:8Þ

The Lifshitz formula (12.7) reproduces the Casimir and Polder result (12.4) for
perfect conductors. Both in the short- and the long-range limits, the Lifshitz for-
mula simplifies considerably. For z! 0 the interaction potential behaves as

VðzÞ �z!0� �h

ð4pÞ2e0z3

Z1

0

dxa1ðixÞ
eðixÞ � 1
eðixÞ þ 1

� �C3

z3
: ð12:9Þ

In the long-distance limit the interaction potential for a generic eðxÞ is

VðzÞ �z!1� 3�hca1ð0Þ
2ð4pÞ2e0z4

eð0Þ � 1
eð0Þ þ 1

� �C4

z4
: ð12:10Þ

Under some special conditions the Casimir and Polder force can also be
inferred (both theoretically and experimentally) from the interaction energy of two
macroscopic bodies, if we consider one of the media sufficiently dilute [5]. These
conditions were fulfilled in the experiments by Sabisky and Anderson [6]. In this
sense this 1972 experiment can be viewed as the first experimental verification of
the Casimir-Polder force. In their beautiful cryogenic experiments Subisky and
Anderson measured the thickness of helium films adsorbed on cleaved SrF2 sur-
faces in thermal equilibrium at 1.4 K as a function of hyperpressure. The authors
get exceptionally good agreement between the film thickness measured and the
one calculated using the Lifshitz formula. The agreement is even more remarkable
since the method strongly depends on the assumption that the non-additivity of the
van der Waals forces does not play a major role. In this case that assumption works
so well because of the extraordinary weakness of the interaction between helium
atoms. The authors note that the best results were obtained on atomically flat
regions of the substrate and that the influence of surface roughness in these
experiments was certainly significant.

Only two years later Shih and Parsegian [7] published an atomic beam
deflection experiment to measure van der Waals forces between heavy alkali
atoms and gold surfaces. With these precision measurements the authors were able
for the first time to pin down the distance dependency of the van der Waals force in
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the non-retarded regime to be proportional to 1=z3: The authors include very
accurate calculations of the interaction potential performed using the Lifshitz
formula. They used ab-initio computed (on the Hartree-Fock level) atomic po-
larizabilities and included the finite conductivity of the gold substrate. The
resulting strength coefficient C3 of the van der Waals interaction is not a constant
but varies with separation (the retardation effect). Unfortunately, the measure-
ments (see Fig. 12.1) were not precise enough in the region of interest to reveal
these retardation effects as a deviation from the 1=z3 behavior. It is worth noting
that although these calculations were the best available at the time the theoretical
values they predict are systematically 60% larger than the values for the interac-
tion observed in experiments. The authors suggest surface roughness and con-
tamination as possible sources for the discrepancy between calculation and
experiment. Still, this seminal paper is the first definite confirmation of the validity
of the Dzyaloshinskii-Lifshitz-Pitaevskii [8] formalism for the interaction between
an atom and a surface, and establishes QED vacuum fluctuations as the common
basis for van der Waals and Casimir-Polder forces.

It took almost two more decades before a deviation from the 1=z3 behavior for the
van der Waals potential was experimentally resolved. In Ed Hinds’s group [9] a
beam of ground state sodium atoms was passed through a micron-sized cavity. This
geometry does not exactly correspond to the Casimir-Polder atom single plate
arrangement, but instead the atoms travel slowly through a cavity made of plates that
include a small angle (V-shape). The cavity width can be varied by moving the
source vertically. As a function of plate separation the transmission loss due to the

Fig. 12.1 The Cs beam
profile, normalized to the full
beam intensity, measured as a
function of the deflection
distance S, into the geometric
shadow of the gold surface.
The derived interaction
potential is consistent with
the van der Waals form 1=z3

and has a strength which is
best described within the
macroscopic continuum
theory of Lifshitz.
(Reproduced with permission
from [7].)
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long-range interaction with the cavity walls was measured and compared to Monte-
Carlo simulations. At large plate distances the purely geometric losses dominate, but
below a critical width Casimir-Polder losses become significant.2 Hinds et al. could
clearly show a modification of the ground state Lamb shift for the sodium atoms
within the cavity, scaling as 1=z4. Furthermore, the numerical coefficient of the 1=z4

interaction was found to be in agreement with theory. Unfortunately the data do not
show a smooth transition to the expected van der Waals behavior at short distances.
The experiment relies heavily on the fact that any atoms not traveling through the
center of the cavity are accelerated towards one of the two plates, stick there and are
thus removed from the beam. This accumulation and its influence on the spectral
properties of the plates were not taken into account.

With the advent of methods for laser cooling and manipulating atoms it became
possible to use light in order to control ultracold atom-wall collisions. Aspect et al.
[10] were the first to use laser cooled and trapped atoms to investigate the Casimir-
Polder potential. 87Rb atoms, caught at a temperature of 10 lK; were released from
a magneto-optical trap into the gravitational potential. After 15 mm of free fall, the
ultracold beam of 87Rb atoms impinged at normal incidence on an atomic mirror.
This mirror consists of a prism that is irradiated from the back by laser light. This
laser light forms an evanescent wave extending along the face of the dielectric, and
as it is slightly detuned from the atomic resonance frequency of the 87Rb atoms it
can provide a controlled repulsive potential for the atoms. Within this light
potential the equilibrium between a repulsive light force and the attractive surface
interaction is used to establish a potential barrier that can be well controlled by
changing the light field. The reflectivity for incident atoms is measured as a
function of barrier height. Landragin’s data seem to favor the inclusion of retar-
dation effects in the atom-wall interaction potential.

In 2001 Shimizu succeeded in reflecting very slow metastable neon atoms
specularly from a solid surface3 [11]. Shimizu prepared an ultracold beam of neon
atoms by trapping the metastables in a magneto-optical trap and then releasing
them into the gravitational potential. After tens of centimeters of free fall, the
metastables impinged under grazing incidence on the substrate. By varying the
angle of incidence he could change the normal incident velocity of the metastable
neon atoms between 0 and 35 mm/s. New in his approach was that the quantum
reflectivity, that is the reflection from the attractive part of the interaction potential
only, depends heavily on the perpendicular impinging energy of the particle.
Plotting the reflectivity of metastable neon atoms versus the normal incident
velocity of the beam the author was able to uniquely identify that the attractive

2 It is not entirely clear how much of the nontrivial geometrical effects were taken into account
in the data analysis.
3 In early experiments of quantum deflecting H atoms, liquid helium was used as a target.
Collectiveness of He atoms within the fluid was ignored, giving information only on the H–He
interatomic potential. It is not quite clear how many of the exotic properties of this superfluid
have an effect on the interaction potential with this macroscopic quantum object.
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interaction was of the Casimir-Polder sort, that is having a 1=z4 dependency.
A simple combined van der Waals Casimir-Polder potential was used to fit the
data, but the measurements were not accurate enough to allow for a quantitative
comparison with theory. The surfaces Shimizu used were rough on a scale much
larger than the de Broglie wavelength of the atoms. This and the fact that the Ne
atoms were in a metastable state guarantees that none of the atoms is specularly
reflected from the repulsive core potential at short distances.4

In 2003 our group published the first experimental observation of quantum
reflection of ground state atoms from a solid surface [12]. Using the extreme sen-
sitivity of the earlier developed atomic beam spin echo method [13] we monitored
ultracold collisions of 3He atoms from the rough surface of a quartz single crystal.
The roughness of the substrate guaranteed that the reflection could only originate
from the attractive part of the potential. The quantum reflectivity data confirmed the
theory by Friedrich et al. [14] on the asymptotic behavior of the quantum reflection
probability at incident energies far from the threshold Ei ! 0.5 The data confirm
this high energy asymptotic behavior which is determined by the van der Waals
interaction and show a gradual transition towards the retarded regime starting as
early as 30 Å above the surface. From the data the gas-solid interaction potential is
deduced quantitatively covering both regions. Using a simple approximation for the
inhomogeneous attractive branch of the helium-quartz interaction potential

VðzÞ ¼ � C4

z3ðzþ �kÞ ð12:11Þ

we find excellent quantitative agreement with the quantum reflection experimental
data for the potential coefficient C4 ¼ 23:6 eV Å3 and the reduced atomic tran-
sition wavelength �k ¼ 93Å. The experiment establishes quantitative evidence for
the 1=z4 Casimir-Polder attraction and the transition towards the 1=z3 van der
Waals regime. Surface roughness was taken into account explicitly, based on an
ex-situ atomic force microscopic measurement. It is worthwhile stressing that both
the atom and the substrate are in their ground state and no lasers are involved. It
thus represents the situation of a single atom interacting with a well defined,
extended, dielectric body through the virtual photons of the quantum fluctuating
vacuum exclusively quite accurately.

The experimental data were also investigated with respect to the inhomogeneity
of the potential model used in (12.11). The analysis shows that neither of the two
homogeneous parts, the van der Waals and the Casimir-Polder branches, can
describe the data without the inclusion of the other. Even though at the distances
explored in this experiment the energies are dominated by the van der Waals
interaction, there is a definite need to include the Casimir-Polder term explicitly.

4 Mind that metastables may exchange real photons with the substrate.
5 For a review on WKB waves far from the semiclassical limit see [15] and references therein.
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This stipulates that the onset of retardation is not only smooth, but extends to well
within the van der Waals regime.

Around the same period, Perreault and Cronin [16] used an atom interferom-
eter, in which a well collimated beam of sodium atoms illuminates a silicon nitride
grating with a period of 100 nm. During passage through the grating slots atoms
acquire a phase shift due to the van der Waals interaction with the grating walls.
As a result the relative intensities of the matter-wave diffraction peaks deviate
from those expected for a purely absorbing grating. A complex transmission
function was developed to explain the observed diffraction envelopes. By fitting a
modified Fresnel optical theory to the experimental data the authors obtain a van
der Waals coefficient C3 ¼ 2:7� 0:8 meV nm3 for the interaction between atomic
sodium and a silicon nitride surface. A few years later, the experiment was refined
by going to a 50 nm wide cavity. The magnitude of the measured phase shift (see
Fig. 12.2) caused by atom-surface interaction is in agreement with that predicted
by quantum electrodynamics for a non-retarded van der Waals interaction.

Steady progress in laser cooling and quantum optics and the application of
evaporative cooling at the turn of the century led to the first successful creation of
a macroscopic quantum system. Nowadays Bose-Einstein condensates are pro-
duced routinely in dozens of labs all over the world. Their behavior and stability in
the vicinity of a solid wall has been investigated for both fundamental and tech-
nical reasons. The first such experiment focusing on the Casimir-Polder interaction
was performed in the group of Ketterle [17] using a Bose-Einstein condensate of
23Na atoms. Since the BEC is much colder than the thermal ensemble in a MOT

Fig. 12.2 Interference pattern observed for sodium atoms passing the atom interferometer
without a grating (middle), or when the grating is inserted into path a (upper) or path b (lower).
The dashed line illustrates the measured phase shift of 0.3 rad. From the measured induced phase
shift as a function of atomic velocity, the authors obtain a van der Waals coefficient
C3 ¼ 3 meV nm3. (Reproduced with permission from [16].)

400 M. DeKieviet et al.



(magnetic-optical trap), like the one Shimizu used, the authors observed quantum
reflectivity for incident angles up to normal. Another major difference is that the
silicon substrate used in this experiment is approached while the atoms are still
trapped in a weak gravito-magnetic trap. The measured reflection probability as a
function of incident normal velocity was compared with a numerical simulation
done for sodium atoms interacting with a conducting wall. The comparison shows
qualitative agreement. Even though the authors simulate the interaction between
the sodium atoms and the semiconductive surface through a C4 coefficient which
corresponds to a conducting surface, the calculated reflection probability is still
systematically higher than the measured data points. The experiment confirms the
1=z4 behavior but the range of velocities the authors could explore is not large
enough to investigate the region closer to the surface where the potential has 1=z3

dependence. The authors refer to earlier work by Cornell et al. [18] (see also
Chap. 11 by Intravaia et al. in this volume for additional discussions) and Vuletic
[19], who discuss serious problems that condensate-based experiments near sur-
faces may experience due to the pollution of even only a small number of atoms at
the surface. Spurious electric and magnetic fields caused by the adsorbates may
lead to large local anomalies in the interaction potential and may severely limit
sensitive Casimir-Polder force measurements.6 A few years later, a refined version
of the experiment was published and interpreted as a measurement of the
temperature dependence of the Casimir-Polder force [20]. In the analysis,
however, the temperature dependence of the coverage and the IR properties of the
adsorbates were not included. In a recent experiment by Zimmermann et al. [21],
which is comparable to the experiment in [10], an unresolved inconsistency in the
quantitative comparison between Casimir-Polder theory and experiment is still
present.

It is fair to say that in present day Casimir-Polder physics the quantitative
comparison between experiments and theory is limited by the lack of detailed
knowledge of the exact experimental parameters like surface roughness and
cleanliness, identity of the adsorbates and their influence on the overall atom-
surface interaction potential. Consequently, modern experiments on atom-surface
Casimir physics should not only aim for higher precision, but simultaneously for a
better characterization and control of these experimental conditions.

Before discussing the different experimental approaches in this context, it may
be useful to identify the physics that could possibly be revealed in future Casimir-
Polder studies. In the following section we summarize some of the current theo-
retical issues.

6 In [17] Ketterle makes the following observation: ‘‘Surfaces are traditionally considered
enemies of cold atoms: Laser cooling and atom optics have developed thanks to magnetic and
optical traps that confine atoms with non-material walls in ultrahigh vacuum environments
designed to prevent contact with the surfaces. Paradoxically, it turns out that in the extreme
quantum limit of nano Kelvin matter waves, a surface at room temperature might become a useful
device to manipulate atoms.’’

12 Modern Experiments on Atom-Surface Casimir Physics 401



12.3 The Atom-Surface Interaction

12.3.1 Practical Application of the Lifshitz Formula

The properties of the solid enter the formula (12.7) in the form of its frequency
dependent permittivity. Although it has been demonstrated that e can in some cases
be computed ab-initio [22], the accuracy and reliability of the obtained results are
uncertain at present. Possible difficulties include the contribution of vibrational
excitations within the solid to the atom-surface interaction energy [23]. This term
can be relatively large, like in the case of glass or a�quartz (10%) and has so far
been neglected in the full ab-initio approach.

Some of the solids for which the contemporary experiments are performed are
transition metals, for which both the relativistic effects and the fact that metals are
open shell systems make accurate theoretical predictions extremely difficult.
Another drawback of the presently available theoretical results for solids is the
neglect of temperature effects. As a result the theoretically computed permittivity
as a function of frequency typically exhibits more structure than the ones derived
from experimental optical data. This makes the use of published optical data a
useful alternative to theoretical computation of the dielectric properties of solids
(e.g. [24] and references therein). The procedure, however, is complicated by the
fact that experimental data for the complex permittivity exist only for real fre-
quencies and its values along the imaginary axis have to be reconstructed using the
Kramers-Kroenig relation:

eðixÞ ¼ 1þ 2
p

Z1

0

dn
n Im eðnÞ
x2 þ n2 : ð12:12Þ

Apart from the frequency dependent permittivity of the solid the computation of
the atom-surface interaction energy requires the dynamic dipole (or multipole)
polarizability of the atom as an input. In the past a single resonance model for the
dynamic polarizability was used:

a1ðixÞ ¼
a1ð0Þ

1þ x2=x2
1

; ð12:13Þ

where x1 is the lowest allowed transition frequency. This simplification may lead
to an error in the short range interaction energy as large as 40% (for the case of He)
when compared to results that use more accurate polarizabilities. Slight
improvement is obtained by using a few-resonance approximation, in which a few
lowest lying excited states are included in the spectral expansion:

a1ðixÞ ¼
X

i

f ð1Þi0

x2
i þ x2

; ð12:14Þ
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where xi denote the allowed transition frequencies, and f ð1Þi0 (see for example [23])
are the corresponding oscillator strengths. Even when all discrete transition fre-
quencies are included, this approximate approach still leads to a 20% error (for
ground state He) as it neglects the significant contribution coming from excitations
to the continuous spectrum. We therefore recommend using ab-initio computed
dynamic atomic polarizabilities whenever possible. Dynamic polarizabilities of the
noble gas, alkali and alkaline atoms evaluated for imaginary frequencies have
recently been published [25].

12.3.2 Limitations of the Lifshitz Theory

The Lifshitz formula describes the interaction of an arbitrary atom with any surface
and is a good starting point for the comparison between atom-surface theory and
experiment. It should be realized, however, that it suffers from a number of
drawbacks that may become important in future Casimir-Polder experiments. As
pointed out earlier, formula (12.7) becomes invalid for atom-surface distances
comparable to the charge radius of the atom (of the order of Å), due to exchange
effects. At slightly larger distances, of the order of a few Å (for ground state atoms,
but as large as a few nm for metastable helium atoms), the Lifshitz approach, being
based on second order perturbation theory, breaks down due to higher order effects.
At even larger distances (a few nm for He) its validity is reduced further, when
quadrupole and higher multipole polarizabilities of the atom are to be included.
These effects can be theoretically computed and are considered in the next sections.
These, and other corrections to the Lifshitz formula, that cannot easily be assigned a
definite length scale will be considered in the following sections. Their list includes:

• Corrections from higher orders of perturbation theory
• Contributions from higher multipole polarizabilities of the atom
• Temperature effects
• Relativistic and radiative corrections
• Effects of magnetic susceptibilities of both the atom and the solid
• Corrections from the nonplanar geometry and imperfections of the surface

From the experimental point of view some of these effects are already in reach
with current methods. Others, like the relativistic and radiative corrections, or the
effects of nonlocal response of the surface, may only become visible in future
generations of experiments.

12.3.3 Higher Orders of Perturbation Theory

The applicability of the Lifshitz formula is limited to distances z larger thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ð0Þ=ð4pe0Þ3

p
, at which higher orders of perturbation theory become important.
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The next nonzero contribution to the atom-surface interaction energy comes from
the fourth order in atom-field coupling, i.e. second order in atomic dipole polar-
izability. This has been calculated by Marvin and Toigo [26] and reads

V1;1ðzÞ ¼ �
�h

29p2e0z6

Z1

0

dxa2
1ðixÞ

�
eðixÞ � 1
eðixÞ þ 1

�2

e�2xz=cP1;1ðxz=cÞ; ð12:15Þ

where the polynomial P1;1ðxÞ is defined as

P1;1ðxÞ ¼ 3þ 12xþ 16x2 þ 8x3 þ 4x2: ð12:16Þ

The f1; 1g index indicates that (12.15) depends on the square of the dipole
polarizability of the atom. It is only the first term of the series of corrections
and the ones depending on products of multipole polarizabilities followed by
V1;2; V1;3; V2;2; V1;1;1, etc., all of which are at present not calculated.

It is worth noting that together with the above result the same authors present an
incorrect formula for the first order term, given here in (12.7). Their leading order
result [26] including retardation is in disagreement with [4, 23, 27]. Its short-range,
nonrelativistic limit is, however, in agreement with other works. The short-range
limit of (12.15) is

V1;1ðzÞ ¼ �
�h

29p2e0z6

Z1

0

dxa2
1ðixÞ

�
eðixÞ � 1
eðixÞ þ 1

�2

ð12:17Þ

and is consistent with the nonrelativistic result of McLachlan [28].

12.3.4 Effect of Multipole Polarizabilities

Another group of effects limiting the use of (12.7) are those resulting from the
higher multipole polarizabilities of the atom, like quadrupole and octupole ones.
The corrections from quadrupole polarizability of the atom become important

when z is comparable to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð0Þ=a1ð0Þ

p
, where a1 and a2 denote the dipole and

quadrupole polarizabilities of the atom.
The effects of the quadrupolar polarizability of the atom on interaction potential

V2ðRÞ were first calculated in the nonrelativistic case by Zaremba and Hutson
[29]. In general the second order interaction energy can be written as a multipole
expansion

VðzÞ ¼V1ðzÞ þV2ðzÞ þV3ðzÞ þ � � � ð12:18Þ

where each of the VnðzÞ terms comes from the 2n-pole atomic polarizability
coupled to the fluctuating electromagnetic field. The first term V1ðzÞ is the
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previously considered Lifshitz contribution, while the next ones constitute cor-
rections, which in the limit of small distances behave as C2nþ1=z2nþ1.

For short distances, higher terms in the multipole expansion used to derive (12.7)
become important. The generalization of the derivation of the Lifshitz formula to
include higher multipoles has been presented in [23], and gives contributions to the
interaction energy from an arbitrary 2n-pole polarizability of the atom:

VnðzÞ ¼ �
�h

8p2e0c2nþ1

Z1

0

dx x2nþ1anðixÞ
Z1

1

dne�2nxz=cPnðnÞHðn; eðixÞÞ;

ð12:19Þ

where anðxÞ is the 2n-pole polarizability and PnðnÞ are polynomials which for
n ¼ 1; 2; 3; 4 (dipole, quadrupole, octupole and hexadecupole components)
explicitly read

P1ðnÞ ¼ 1; ð12:20aÞ

P2ðnÞ ¼
1
6
ð2n2 � 1Þ; ð12:20bÞ

P3ðnÞ ¼
1

90
ð4n4 � 4n2 þ 1Þ; ð12:20cÞ

P4ðnÞ ¼
1

90
ð8n6 � 12n4 þ 6n2 � 1Þ: ð12:20dÞ

In the limit of small distances or, equivalently, in the nonrelativistic limit
(c!1) (12.19) leads to a surprisingly simple result:

VnðzÞ ¼z!0� �h

ð4pÞ2e0z2nþ1

Z1

0

dxanðixÞ
eðixÞ � 1
eðixÞ þ 1

: ð12:21Þ

The n = 2 case reproduces the short-range asymptotic result of Zaremba and
Hutson [29]. The derivation of the long-distance limit of the multipole contribu-
tions lead to

VnðzÞ ¼
z!1� �hcanð0Þ

ð4pÞ2e0z2nþ2
Dn

eð0Þ � 1
eð0Þ þ 1

; ð12:22Þ

where the Dn constants are: D1 ¼ 3=8; D2 ¼ 25=12; D3 ¼ 301=120; D4 ¼ 1593=560.
The quadrupole and octupole dynamic atomic polarizabilities of helium atoms

(in the ground and metastable states) together with accurate (at 10�8) and simple
global fits have been published [30]. Simulations based on potentials computed
using these multipole polarizabilities have shown that, in the quantum reflection
experiments of the type reported in [12], the quadrupolar contribution could be
seen at the few percent level.
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12.3.5 Effects of Non-zero Temperature

Modification of the atom-surface interaction energy due to non-zero temperature
has two distinct origins. The permittivity of the solid, entering the formulae
(12.7)–(12.19), is itself temperature dependent. More importantly there is also an
explicit temperature dependence resulting from thermal fluctuations of the elec-
tromagnetic field, calculated first by Dzyaloshinskii et al. [8]. The complete for-
mula in a form closely resembling (12.7) reads [31, 32]

V1ðz; TÞ ¼ �hkBT

4pe0

X1
i¼0

ð1� 1
2
d0iÞa1ðixiÞ

Z1

1

dne�2nxi=c Hðn; eðixiÞÞ; ð12:23Þ

where kB is the Boltzmann constant, xi ¼ 2pikBTz=�h are the Matsubara
frequencies and d0i ¼ 1 for i ¼ 0, and is equal to 0 otherwise. The above result
relies on the assumption that the temperature is small enough to neglect thermal
excitations of the atom. This assumption is true as long as �hx1 	 kBT , which is
fulfilled for most ground state atoms at any reasonable temperature (i.e. below the
melting point of the experimentally considered solids), but does not have to be true
for experiments with metastable excited states.

Just as for the T ¼ 0 case, in the short-range limit formula (12.23) can be
approximated by

V1ðz; TÞ ¼z!0�C3ðTÞ
z3

; ð12:24Þ

where

C3ðTÞ ¼
�hkBT

16pe0
að0Þ eð0Þ � 1

eð0Þ þ 1
þ 2

X1
i¼1

aðixiÞ
eðixiÞ � 1
eðixiÞ þ 1

" #
: ð12:25Þ

In the low temperature limit the above result approaches the T ¼ 0 one (12.9).
It has already been discovered by Lifshitz that, in comparison to the zero-tem-
perature case, the long-distance behavior of (12.23) is qualitatively different. For
distances much greater than the thermal length scale introduced in Matsubara
frequencies

z	 kT �
�hc

kBT
; ð12:26Þ

the atom-surface interaction energy behaves as:

VðzÞ �z!1� kBTa1ð0Þ
4ð4pÞe0z3

eð0Þ � 1
eð0Þ þ 1

: ð12:27Þ

It is worth noting that the coefficient at the long distance 1=z3 asymptotics given by
(12.27) vanishes for T ! 0, but the range of distances where it is valid, given by
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(12.26), also widens. The distance scale of the temperature effects kT is usually orders
of magnitude larger than the retardation distance scale �k and for experimentally
considered cases the 1=z4 asymptotics given by (12.6) is valid for a wide range of
distances. At room temperature kT is on the order of 100 lm (infrared wavelength),
while k is on the order of 100 nm for most ground state atoms (ultraviolet wave-
length). For conductors, due to the singularity of eðxÞ at zero frequency, (12.27)
takes a universal form independent of any characteristics of the solid. It remains a
subject of current research whether or not this result requires modification. This
peculiarity is especially pronounced for conductors with a very low concentration of
carriers, or with slowly moving carriers (for example ions) [33].

12.3.6 Relativistic and Radiative Corrections

The theory of relativistic corrections to the interaction between closed shell atoms
was recently developed by Pachucki [34]. Earlier studies of the interplay between
relativistic and radiative corrections had been done by Meath and Hirschfelder [35,
36]. The general result is that the relativistic corrections of the lowest order (a2)
can be grouped into three categories, where the ones dominant at large interatomic
distances (orbit-orbit, or Breit interaction) are already incorporated in the Casimir-
Polder formula. Corrections can be classified as relativistic corrections to dynamic
atomic polarizabilities, or as coupling between electric polarizability of one atom
and the magnetic susceptibility of the other [34]. The relativistic and QED cor-
rections to atomic polarizabilities are, at least for the well studied case of He,
negligible at the level of precision considered here [37], and so are contributions
from atomic magnetic susceptibility. On the other hand the contribution to the
Casimir-Polder force resulting from the magnetic susceptibility of the solid can
lead to measurable effects in the case of ferromagnetic materials [38].

12.3.7 Effects of Nonplanar Geometry and Nonuniformity

As described in the introductory chapter, many of the original experiments investi-
gating the atom-surface interactions have been performed for geometries different
from the planar one. The cases of an atom interacting with macroscopic spheres and
cylinders (or wires) have been partly solved [39–41]. For more complicated geom-
etries corrections can be estimated, at least for dielectric materials, using the pairwise
summation method [5]. When the radius of curvature of the surface is much larger
than the relevant range of atom-surface distances (which is frequently the case) the
resulting geometric corrections are negligible. For all other cases, a first rigorous
theoretical study on the inclusion of uniaxial corrugations has been performed for a
scalar field by Gies et al. [42]. Unfortunately the extension of these results to elec-
tromagnetic fields is nontrivial. An important exception results from the fact that
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even if the experiments are meant to be performed on flat surfaces, the nontrivial
geometry enters in the form of corrections induced by corrugations or imperfections
of the surface. In the limit of atom-surface distance much larger than the surface
corrugations the roughness of the surface can be taken into account as a modification
of its reflection coefficients [43].

The case when neither of the conditions mentioned above is fulfilled, which
means that the curvature radius of the surface is neither very small nor very large
in comparison to the atom-surface distance, and the surface is a conductor, is an
open problem.

Modern Casimir-Polder Experiments

Modern experiments on atom-surface Casimir physics should not only be more
sensitive and precise as a technique, but also be able to characterize and control the
system under investigation in a quantitative manner. The first requirement is
obvious; the second, however, no less important. Progress in this field will criti-
cally depend on the applicability of direct comparisons between theory and
experiment and thus on the accuracy of the system parameters used on both sides.
Let us relate this to the different type of modern Casimir-Polder experiments
according to the approach they apply.

• Spectroscopic measurements: It is common knowledge in experimental physics
that the best way for improving precision is to design a signature that can be
measured as a frequency. In this respect the (quantum) optics experiments of
the type mentioned above naturally promise a huge potential for Casimir-Polder
physics. The atom-wall interaction leads to a distance-dependent shift of the
atomic energy levels which may be detected by resonant spectroscopic tech-
niques. An important and necessary requirement for this technique to work is
that the energy shifts involved for the excited atoms behave very differently
from those of the ground state species. The equilibrium between a repulsive
light force and the attractive surface interaction can be used to establish a
potential barrier. The barrier height can be controlled by changing the light field
and its influence is then probed through the reflectivity for incident atoms [10].
For systems involving excited [44, 45] or Rydberg atoms [46, 47] additional
resonance effects come into play, which may in fact turn the Casimir-Polder
interaction itself into a repulsion (see for example [48]). Early experiments on
the direct spectroscopic measurement of van der Waals forces have been suc-
cessful up to a level of several tens of a percent [44, 46]. To date, it seems
feasible to explore the progress in spectroscopic precision and to investigate the
complex QED effects taking place during the atom-wall collisions an order of
magnitude more accurately.

• Bose-Einstein condensates (BECs): From the manipulation of a BEC in front of
a wall, information on the single atom-surface interaction can be obtained,
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since all particles within this macroscopic quantum system are in the same
state. As the trap-minimum is moved closer towards the surface, the Casimir-
Polder forces change the curvature of the trapping potential which leads to a
relative change of the center of mass oscillation frequency. Cornell’s group
measured this frequency shift for BEC atoms inside a chip-based trap [18, 49].
Refined measurements by the same group at the 10�4 level were interpreted by
Antezza et al. in terms of equilibrium and nonequilibrium thermal corrections
to the Casimir-Polder force [50]. The interaction strength was determined at a
ten percent level. In a recent proposal it was argued that the precision in this
type of BEC experiments may be improved by an order of magnitude through
the use of atomic clocks [51].
In both types of quantum optics experiments above it remains unclear how the
state of the surface and its deposits can be quantitatively measured and included
in theory. The same argument also holds for the deflection experiments by
Hinds et al. that rely on the fact that atoms are removed from the beam through
sticking. Absorbed atoms contaminate the substrate and modify the interaction
potential at a level that need not be constant, but may vary with the experi-
mental conditions, like time, light intensity and temperature. Even at sub-
monolayer coverage, adsorbates (in particular metallic ones) modify the
dielectric properties of the system. This is in fact one of the reasons why IR
spectroscopy is such a sensitive and well established tool in surface science (see
for example [52]). Benedek et al. [53] recently reviewed spectral consequences
of vibrations of alkali metal overlayers on metal surfaces, that depend very
sensitively on atomic mass, adsorption position, coverage and substrate ori-
entation. Pucci et al. [54] have recently found a strong enhancement of
vibration signals by coupling an antenna to surface phonon polaritons, using
(far) IR surface spectroscopy. In particular the investigation of temperature
effects in the Casimir-Polder physics may be strongly influenced by such
spectral features. Inversely, one could include (far) IR spectroscopy as a tool to
quantify the state of the substrate in future BEC experiments.

• Atom interference: Another very useful step for improving experimental pre-
cision is shifting from intensity measurements to phase sensitive quantities. The
experiments mentioned in Sect. 2 by Aspect [55] and Cronin [16] are examples
along this line. At the heart of both techniques is an atom interferometer, which
measures phase shifts in the de Broglie waves of the atoms. These first
experiments to detect surface-induced phase shifts were not accurate enough to
test the power law of the potential. Recently, however, by using the Toulouse
interferometer significant improvement could be reported [56]. The interaction
strength between an atom and the silicon nitride nano-grating was now deter-
mined with a precision of 6%. Since the setup was not equipped with any
surface analytical tools, the authors used a trick to reduce the effect of surface
contamination discussed above. By taking ratios of interaction strength coef-
ficients obtained for different atoms, they compared the van der Waals systems
at a level of better than 3%. It must be realized, however, that taking the ratio
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between two C3 values is good only to first order approximation: different
atomic species adsorb differently onto the same surface, with distinguished
temperature behavior and spectral features. In comparing the two, the dielectric
property changes of the wall need not be exactly the same. Still, this method is a
definite improvement and could be useful for other techniques as well.

• Quantum reflection: In 2002 Shimizu et al. reported on a giant quantum
reflection of neon atoms from a ridged silicon surface [57]. The enhancement of
reflectivity with respect to that from flat silicon surfaces was initially explained
as resulting from the reduced effective matter density in the outermost region of
the structured sample. At comparable distances, the interaction potential would
consequently be weaker for the latter and that would enhance the so called
‘‘Bad Land’’ condition for quantum reflectivity at a given value of z. Later it
was established that the giant reflectivity was not so much a consequence of a
modification in the Casimir-Polder potential, but rather due to the collision
process itself.7,8 The explanation was modified, interpreting the process of
grazing incidence over the ridged surface in terms of a Fresnel diffraction [58].
This explanation, however, ignores the modification of the Casimir-Polder
potential due to the periodic structure. This prompted us to experimentally
investigate the underlying question of including geometric effects in this QED
phenomenon more systematically. Extensive studies on the quantum reflectivity
of ground state He atoms from nano-structured substrates of different shape and
material were performed. The results have not been published yet, but have
already initiated great activity in theory to develop a method for embedding
these structures in the scattering formalism. In addition, our experiments show
that the non-additivity of the Casimir-Polder potential leads to a strong azi-
muthal dependence of the measured reflectivity. The data allow for a phe-
nomenological power law description of the interaction, which has a different
exponent along different azimuthal directions.

12.4.1 The Heidelberg Approach

Thermal atom beam scattering was founded in the early 20th century by Stern and
Estermann [59, 60] to verify the wave nature of matter. With the advent of high
quality supersonic jets, the method of diffracting a beam of atoms from a crys-
talline surface developed in the 80’s into a powerful tool in surface science.

7 The need for a more sophisticated explanation was supported by independent observations in
Ketterle’s laboratory. In experiments at normal incidence dedicated to extremely low density
materials quantum reflection was never observed.
8 Recently, similar experiments were performed in Gerhard Meijer’s group, scattering He atoms
from a periodic micro-structure. It could not be substantiated that the process observed is in fact
quantum reflection.
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‘‘Classical’’ thermal atom scattering9 is governed predominantly by the repulsive
part of the full atom-surface interaction potential (see Fig. 12.3). This repulsion is
due to Pauli exclusion during the partial overlap of the electron clouds of the atom
and the solid at very short distances. The full interaction includes of course both
the repulsive and attractive branches and shows a well of minimum potential
energy.

The angular distribution of the specularly reflected atoms reveals information
on the crystallinity and cleanliness of the exposed surface.10 If the de Broglie
wavelength of the atoms is on the order of the lattice constant of the crystal, Bragg
diffraction may occur. The location of the diffraction peaks gives the periodicity of
the surface structure, whereas their intensity distribution contains information on
the corrugation height. With these signatures many detailed studies on clean and
adsorbate covered substrates were performed. Within the impressive spectrum of

Fig. 12.3 Schematic representation of the full interaction potential between a neutral atom and
the surface of a solid. At large distances, there is an attraction due to the Casimir-Polder and van
der Waals effects. This region (marked QR) can be sampled by measuring the quantum
reflectivity of an atomic beam impinging at grazing incidence. Close to the surface the interaction
is dominated by an exponential repulsion, due to the Pauli blocking. The fraction of atoms
scattering ‘classically’ from this wall can be used to extract in-situ information on the quality and
the state of the surface on a sub-atomic level, like periodicity, corrugation, cleanliness and
dynamics. Note that the typical energy ranges for these two processes differ by more than six
orders of magnitude

9 The quotation marks merely indicate that scattering from a repulsive wall can of course be
described according to the laws of classical physics. It should be clearly distinguished from
quantum reflection, for which there is no classical analogue.
10 Note that in the quantum mechanical formulation of atoms scattering from a repulsive wall,
there always is a finite probability for the completely elastic channel.
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achievements of this technique there are not only the crystallographic studies with
sub-Angstrom resolution, but also a whole range of results on two dimensional
dynamics, like surface phonon modes and charge density waves (to get a flavor of
these accomplishments, see for example [61, 62] and references therein).

Thermal atom scattering is predominantly sensitive to potential features
between the wall and the van der Waals range. Only limited information on the
long distance Casimir-Polder contribution can be extracted from the scattering
patterns. Physisorption and chemisorption processes, for example, are generally
governed by the location and shape of the potential well near its energy minimum.
The stronger bound states involved have their classical turning points generally
near to the position of its minimum and normally also lie well within the non-
retarded regime. They have been discussed to investigate quadrupolar and non-
local effects in the physisorption of rare-gas atoms on metal surfaces [63].

Bound state resonance phenomena in atom-surface scattering [61, 62], how-
ever, are determined by the upper bound energy levels within the full interaction
potential of 3. The outermost turning points of these higher levels are located at
distances at which retardation effects may start playing a role. Analyzing all
available data for helium, atomic and molecular hydrogen, however, Vidali et al.
64 established a surprising universality, indicating that these bound states lie still
within the van der Waals regime. Choosing the mathematical shape of the
repulsive wall to be exponential with distance � expð�z=rÞ and fixing the tail to
be � 1=z3 only, Vidali calculated the Bohr-Sommerfeld quantization condition for
all bound state levels and plotted these with the experimental data (see Fig. 12.4).
He found that independent of their type (metals, semiconductors and insulators) all
measured systems fall onto the same curve. This impressive result suggests, that
the adsorption potential energy functional form nearly universally takes the form
of an exponential repulsion and a van der Waals attraction.

It remains worthwhile, however, to search for special cases in which the
weakest bound state lies but barely underneath the dissociation limit. The outer-
most turning points may then be located at distances at which retardation effects
are indeed important.11 For such systems, bound state resonance experiments
could indeed be a valuable tool in modern Casimir-Polder experimental physics,
although maybe not a generic one.

About a decade ago, we designed a machine for performing atomic beam spin
echo measurements on surfaces. Details on the experimental setup are given
elsewhere [13]. In this apparatus, the nuclear magnetic moments of a flux of 3He
atoms are manipulated so as to obtain detailed information about (changes in)
the velocity distribution of the beam before and after scattering from the surface.
The 3He beam is very slow (100 m/s \v\ 200 m/s), since the atomic beam
source is cooled down to 1.1–4.2 K. The 3He kinetic energy thus amounts to

11 A famous example from atomic physics: the weak interaction between two neutral He atoms
just happens to accommodate a single bound level at -150 neV only. As a consequence, the bond
length in the He dimer is close to 45 Å!
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200–800 leV, corresponding to a de Broglie wavelength kdB of 10–3 Å, or a
wavevector 2p=kdB of 0.5–1.5 Å�1. The He atoms are exclusively surface sensitive
and have shown to probe corrugations at the surface down to some 0.01 Å [65].
The 3He Atomic Beam Spin Echo method has been demonstrated to be a partic-
ularly sensitive and precise tool for characterizing the quality, structure and
dynamics of clean, as well as adsorbate covered surfaces. As an example we
summarize some of our results obtained with single crystal gold. In elastic 3He
diffraction experiments on the surface of single crystal Au(111), the dimensions of
the reconstructed unit cell could be extracted to be (p


ffiffiffi
3
p

), with p ¼ 21:5� 0:5
being expressed in the bulk gold nearest neighbor distance a ¼ 2:885 Å. On top of
this substrate, adsorbate molecules (coronene) were deposited and the structure at
monolayer coverage was determined to be a commensurate (4
 4) superstructure
with respect to the unreconstructed gold surface. In addition, we studied diffusion
of the diluted coronene molecules at submonolayer coverages. Their 2-D dynamics
was shown to exhibit continuous and non-continuous (jump) 1-D diffusion. The
activation barrier to this diffusion was inferred from an Arrhenius analysis of its
temperature dependency. We investigated inelastic contributions to the scattering
process and confirmed the existence and dispersion of anomalous phonon modes
that are associated with the reconstruction.

Fig. 12.4 Plot from [64]
illustrating the experimental
correlation between energies
of atom-surface bound states
in units of potential well
depth jenj = �En=D and
JðenÞ ¼ ðnþ 1

2Þ�hp=

ðC1=3
3 D1=6ð2mÞ1=2Þ

(reproduced with
permission). The solid line is
the prediction given by a
simple model potential
VðzÞ ¼ 3=ðu� 3Þe�uz=a �
1=ðzþ aÞ3 with constant
u and a
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With the ‘‘classical’’ reflection governed by the repulsive and van der Waals
regime of the potential, we have at our disposal an in-situ analytical tool from
surface science. On the other hand, we can investigate He atoms being quantum
reflected from the retarded regime and study Casimir-Polder physics. The advan-
tages of such a powerful combination are summarized in the following Table 12.1.

In order to illustrate that this unique combination of tools is in fact at our
disposal contemporaneously, we present here experimental data obtained for single
crystal gold [66]. The measurements were performed much in the same way as our
quantum reflection data described in Sect. 12.2 for the case of single crystal quartz
were obtained [12]. The gold surface, however, is atomically flat12 and also shows
3He reflectivity from the repulsive wall (see Fig. 12.3).

Although both the ‘‘classical’’ and the quantum contributions consist of spec-
ularly reflected beams, the two can be distinguished through their line shape in the
angular distribution. For each incident wave vector a detector angle scan was made
and the two intensities evaluated. In this manner, the dots in upper set for the
‘‘classical’’ and the dots in lower set for the quantum reflectivities in Fig. 12.5
were obtained. The first curve in upper set is but a guide-to-the-eye for the clas-
sical reflection results. The first middle curve in lower set is an exact calculation
based on the simple potential model used in 12.11, using the strength parameter for
a perfect conductor. These quantum reflection data were also investigated with
respect to the necessity for inhomogeneity of the model in 12.11. The additional
curves in lower set in Fig. 12.5 clearly demonstrate that neither a strict van der
Waals potential nor a pure Casimir-Polder attraction describe the data accurately.
The dashed red line in lower set accounts for the homogeneous Casimir-Polder
contribution (12.6), again using the interaction strength for a perfect conductor.

Table 12.1 Problems limiting the accuracy of classical Casimir force measurements and cor-
responding solutions in the 3He Atomic Beam Spin Echo technique

Casimir versus Casimir-Polder

Characterization of the surface quality Surface science (typical \0.01 monolayer)
Quantization of surface roughness Atom diffraction (single crystal)
Calibration of probe-surface distance Atomic resolution
(plate-plate, sphere-plate) (� 0:01 Å)
Control over probe Atomic beam
(sphere quality, coating, roughness) (� 1019 He atoms s�1 sr�1)
Geometry Atom size � relevant length scale
(pl-pl: parallellism, sph-pl: proximity

approx.)
(1 Å vs. 1 lm)

Spurious electrostatic effects Neutral single atoms
Imperfect conductor Any system (metal, semi-conductor,

insulator)
Resolution Atom interferometry

12 In fact it is the exact same sample that was used in the surface science experiments reviewed
earlier in this section.
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The corresponding homogeneous van der Waals interaction would give a quantum
reflectivity, which is negligibly small. The second middle curve in lower set
represents the quantum reflectivity based on a van der Waals interaction only,
using the more realistic coefficient of C3 ¼ 0:25 eV Å3. From the figure it is clear
that at the distances explored in this experiment the energies are dominated by the
Casimir-Polder interaction. Still, there is a definite need to include the van der
Waals term explicitly. This demonstrates that with the Heidelberg approach it is
now possible to resolve features in the potential at a few-percent level.

In summary, with the renaissance in atomic physics a great variety of new
experimental techniques have been steadily improving the accuracy in Casimir-
Polder measurements to well below the ten percent level. Current trends and pro-
posals promise to be pushing this in the near future to below the one percent barrier.
At that level of precision new contributions, like those explicitly dependent on
temperature and higher order effects (additional multipoles, etc), are within reach.
This will be important for our understanding of vacuum fluctuations. Tremendous
theoretical progress has been made to include non-trivial boundary conditions to
their spectrum. The feasibility of a direct comparison with measured data requires a
quantitative experimental characterization of these conditions as well.
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chungsgemeinschaft (DFG, contract Je285/5–1). U.J. acknowledges support from the National
Science Foundation (Grant PHY–8555454) and from the National Institute of Standards and
Technology (precision measurement grant).

Fig. 12.5 Plot of the reflectivity of 3He atoms from the single crystal surface of Au(111). The
upper set of data points (including their statistical errors) represents ‘‘classical’’ reflection from
the repulsive wall (see text). The lower set of data points and error bars corresponds to the
simultaneously measured quantum reflectivity from the attractive tail of the interaction potential.
Results for the corresponding simulation are shown in the lower three solid curves: the top one is
based on the full potential derived from (12.19); the two lower curves are based on the
homogeneous potentials for a perfect conductor, the Casimir-Polder result (12.6) (middle) and
van der Waals result (12.5) (bottom), respectively. Finally, the bottom curve represents the
homogeneous van der Waals result (12.5) for a perfect conductor. (Further details will be
presented in [66].)
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Chapter 13
Fluctuations, Dissipation
and the Dynamical Casimir Effect

Diego A. R. Dalvit, Paulo A. Maia Neto and Francisco Diego Mazzitelli

Abstract Vacuum fluctuations provide a fundamental source of dissipation for
systems coupled to quantum fields by radiation pressure. In the dynamical Casimir
effect, accelerating neutral bodies in free space give rise to the emission of real
photons while experiencing a damping force which plays the role of a radiation
reaction force. Analog models where non-stationary conditions for the electro-
magnetic field simulate the presence of moving plates are currently under experi-
mental investigation. A dissipative force might also appear in the case of uniform
relative motion between two bodies, thus leading to a new kind of friction mech-
anism without mechanical contact. In this paper, we review recent advances on the
dynamical Casimir and non-contact friction effects, highlighting their common
physical origin.

13.1 Introduction

The Casimir force discussed in this volume represents the average radiation
pressure force upon one of the interacting bodies. When the zero-temperature limit
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is considered, the average is taken over the vacuum field state. Although the
average electric and magnetic fields vanish, the Casimir force is finite because
radiation pressure is quadratic in the field strength operators. In this sense, the
Casimir force derives from the fluctuating fields associated with the field zero-
point energy (or more precisely from their modification by the interacting bodies).

As any quantum observable, the radiation pressure itself fluctuates [1, 2]. For a
single body at rest in empty space, the average vacuum radiation pressure vanishes
(for the ground-state field cannot be an energy source), and all that is left is a
fluctuating force driving a quantum Brownian motion [3]. The resulting dynamics
is characterized by diffusion in phase space, thus leading to decoherence of the
body center-of-mass [4, 5].

Besides diffusion, the radiation pressure coupling also leads to dissipation, with
the corresponding coefficients connected by the fluctuation-dissipation theorem
[6]. As in the classical Brownian motion, the fluctuating force on the body at rest is
closely related to a dissipative force exerted when the body is set in motion. Since
the vacuum state is Lorentz invariant, the Casimir dissipative force vanishes in the
case of uniform motion of a single body in empty space, as expected from
the principle of relativity. For a non-relativistic ‘‘mirror’’ in one spatial dimension
(1D), the Casimir dissipative force is proportional to the second-order derivative of
the velocity [7], like the radiation reaction force in classical electrodynamics.
Casimir dissipation is in fact connected to the emission of photon pairs by the
accelerated (electrically neutral) mirror, an effect known as the dynamical Casimir
effect (DCE). The power dissipated in the motion of the mirror is indeed equal to
the total radiated power in DCE as expected from energy conservation.

The creation of photons in a 1D cavity with one moving mirror was first
analyzed by Moore [8], and explicit results were later derived in Ref. [9].
Relativistic results for the dissipative Casimir force upon a single mirror in 1D and
the connection with DCE were derived in a seminal paper by Fulling and Davies
[10]. At this earlier stage, the main motivation was the analogy with the Hawking
radiation associated with black-hole evaporation [11, 12].

The interplay between Casimir dissipation and fluctuations was investigated only
much later [3, 13, 14], in connection with a major issue in quantum optics: the
fundamental quantum limits of position measurement (this was motivated by the
quest for interferometric detection of gravitational waves) [15–17]. Linear response
theory [18] provides a valuable tool for computing the Casimir dissipative force on a
moving body from the fluctuations of the force on the body at rest, which is in general
much simpler to calculate. This method was employed to compute the dissipative
force on a moving, perfectly reflecting sphere [19] and on a plane surface experi-
encing a time-dependent perturbation [20] (the latter was also computed by taking
the full time-dependent boundary conditions (b.c.) [21, 22]).

In all these configurations, Casimir dissipation turns out to be very small when
realistic physical parameters are taken into account. The predicted orders of
magnitude are more promising when considering a closely related effect: quantum
non-contact friction in the shear relative motion between two parallel surfaces
[23, 24]. In contrast with the radiation reaction dissipative effect discussed so far,
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quantum friction takes place even for a uniform relative motion. On the other
hand, quantum friction requires the material media to have finite response times
(dispersion). From Kramers–Kronig relations [25], the material media must also be
dissipative, and the resulting friction depends on the imaginary part of the
dielectric constant e:

Whereas the direct measurement of the Casimir radiation reaction dissipative
force seems to be beyond hope, the corresponding photon emission effect might be
within reach in the near future. The properties of the radiated photons have been
analyzed in great detail over recent years. For a single moving plane mirror, the
frequency spectrum was computed in 1D [26] as well as in 3D [27] in the non-
relativistic approximation. A variety of 3D geometries were considered, including
deforming mirrors [28], parallel plates [29], cylindrical waveguides [30], and
spherical cavities containing either scalar [31, 32] or electromagnetic fields [33, 34].

Closed rectangular [35–37] or cylindrical [38] microwave cavities with one
moving wall are by far the best candidates for a possible experimental imple-
mentation, with the mechanical oscillation frequency X tuned into parametric
resonance with cavity field modes. Because of the parametric amplification effect,
it is necessary to go beyond the perturbative approximation in order to compute the
intracavity photon number even in the non-relativistic regime [39–41].

As the microwave field builds up inside the cavity, cavity losses (due to
transmission, dissipation or diffraction at the rough cavity walls) become
increasingly important. Finite transmission at the mirrors of a 1D cavity was taken
into account within the scattering approach developed in Refs. [26, 42, 43]. Master
equations for the reduced density operator of the cavity field in lossy 3D cavities
were derived in Refs. [44, 45]. Predictions for the total photon number produced at
very long times obtained from the different models are in disagreement, so that a
reliable estimation of the DCE magnitude under realistic conditions is still an open
theoretical problem.

It is nevertheless clear that measuring DCE photons is a highly non-trivial
challenge (see for instance the proposal [46] based on superradiance amplifica-
tion). For this reason, in recent years the focus has been re-oriented towards analog
models of DCE. Although dynamical Casimir photons are in principle emitted
even in the case of a global ‘center-of-mass’ oscillation of a cavity, the orders of
magnitude are clearly more favorable when some cavity length is modulated. In
this case, one might modulate the optical cavity length by changing the intracavity
refractive index (or more generally material optical constants) instead of changing
the physical cavity length. For instance, the conductivity of a semiconductor slab
can be rapidly changed with the help of a short optical pulse, simulating the
motion of a metallic mirror [47–50] and thereby producing photons exactly as in
the DCE [51, 52]. An experiment along these lines is currently under way [53] (see
Ref. [54] for an update). Alternatively, one might select a setup for operation of an
optical parametric oscillator such that it becomes formally equivalent to DCE with
a modulation frequency in the optical domain [43].

Alongside the examples in quantum and nonlinear optics, one can also devise
additional analogues of DCE in the field of circuit quantum electrodynamics
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[55, 56]. For instance, a co-planar waveguide with a superconducting quantum
interference device (SQUID) at its end is formally equivalent to a 1D model for a
single mirror [57, 58]. When a time-dependent magnetic flux is applied to the
SQUID, it simulates the motion of the mirror. More generally, Bose–Einstein
condensates also provide interesting analogues for DCE [59] and Casimir-like
dissipation [60], with electromagnetic vacuum fluctuations replaced by zero-point
fluctuations of the condensate.

Reviews on fluctuations and Casimir dissipation on one hand and on DCE on the
other hand can be found in Refs. [61, 62] and Refs. [63–65], respectively. This
review paper is organized as follows. In Sect. 13.2, we discuss the interplay
between fluctuations, dissipation and the photon creation effect for a single mirror
in free space. Section 13.3 presents a short introduction to non-contact quantum
friction. In Sect. 13.4, photon creation in resonant cavities with either moving walls
or time-dependent material properties is presented in detail. Section 13.5 briefly
discusses experimental proposals, and Sect. 13.6 contains some final remarks.

13.2 Dissipative Effects of the Quantum Vacuum

13.2.1 1D Models

We start with the simplest theoretical model: a non-relativistic point-like ‘mirror’
coupled to a massless scalar field /ðx; tÞ in 1D. We assume Dirichlet boundary
conditions, at the instantaneous mirror position q(t):

/ðqðtÞ; tÞ ¼ 0: ð13:1Þ

In the non-relativistic approximation, we expect the vacuum radiation pressure
force f(t) to be proportional to some derivative of the mirror’s velocity. As a
quantum effect, the force must also be proportional to �h; and then dimensional
analysis yields

f ðtÞ / �hqð3ÞðtÞ
c2

; ð1DÞ ð13:2Þ

where qðnÞðtÞ � dnqðtÞ=dtn: Note that (13.2) is consistent with the Lorentz
invariance of the vacuum field state, which excludes friction-like forces propor-
tional to qð1ÞðtÞ for a single moving mirror (but not in the case of relative motion
between two mirrors discussed in Sect. 13.3).

In order to compute the dimensionless prefactor in (13.2), we solve the b.c.
(13.1) to first order in q(t) as in Ref. [7], with the mirror’s motion treated as a small
perturbation. However, instead of analyzing in the time domain, we switch to the
frequency domain, which allows us to understand more clearly the region of
validity of the theoretical model leading to (13.2). We write the Fourier transform
of the field as a perturbative expansion:
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Uðx;xÞ ¼ U0ðx;xÞ þ dUðx;xÞ; ð13:3Þ

where the unperturbed field U0ðx;xÞ corresponds to a static mirror at x ¼ 0 :
U0ð0;xÞ � 0: The boundary condition for dUðx;xÞ is derived from (13.1) by taking
a Taylor expansion around x ¼ 0 to first order in QðXÞ (Fourier transform of q(t)):

dUð0;xoÞ ¼ �
Z1

�1

dxi

2p
Qðxo � xiÞoxU0ð0;xiÞ: ð13:4Þ

Equation (13.4) already contains the frequency modulation effect at the origin of
Casimir dissipation: the motion of the mirror (frequency X) generates an output
amplitude at the sideband frequency xo ¼ xi þ X proportional to QðXÞ from a
given input field frequency xi:

In order to find the Casimir dissipative force, we take the Fourier transform of

the appropriate component T11 ¼ 1
2½ 1c2ðot/Þ2 þ ðox/Þ2� of the energy-momentum

tensor and then replace the total field Uðx;xÞ containing the solution dUðx;xÞ of
Eq. (13.4). After averaging over the vacuum state, we obtain the resulting force

FðXÞ ¼ vðXÞQðXÞ; ð13:5Þ

vðXÞ ¼ 2i
�h

c2

Z1

�1

dxi

2p
ðXþ xiÞjxij: ð13:6Þ

After regularization, it is simple to show that the contribution
R�X
�1 dxið. . .Þ

cancels the contribution
R1

0 dxið. . .Þ in (13.6). Thus, only field frequencies in the
interval �X�xi� 0 contribute to the dynamical radiation pressure force, yielding

FðXÞ ¼ i
�hX3

6pc2
QðXÞ; ð13:7Þ

in agreement with (13.2) with a positive prefactor ( 1
6p) as expected for a dissipative

force. This result was first obtained in Ref. [7] within the perturbative approach
and coincides with the non-relativistic limit of the exact result derived much
earlier in Ref. [10]. It may also be obtained as a limiting case of the result for a
partially transmitting mirror, which was derived either from the perturbative
approach outlined here [14] or by developing the appropriate Schwinger-Keldysh
effective action within a functional approach to the dissipative Casimir effect [66].
When considering a moving dielectric half-space, one obtains as expected one-half
of the r.h.s. of (13.7) in the limit of an infinite refractive index [67]. The final result
for FðXÞ is exactly the same as in (13.7) when we replace the Dirichlet b.c. (13.1)
by the Neumann b.c. at the instantaneously co-moving Lorentz frame (primed
quantities refer to the co-moving frame) ox0/jx0¼qðt0Þ ¼ 0 [68]. Dirichlet and

Neumann b.c. also yield the same force in the more general relativistic regime
[69]. On the other hand, for the Robin b.c.
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ox0/jx0¼qðt0Þ ¼
1
b
/jx0¼qðt0Þ ð13:8Þ

(b is a constant parameter), the force susceptibility vðXÞ displays a non-monotonic
dependence on X; and is nearly suppressed at X� 2:5c=b [70].

We could have anticipated that high-frequency modes with xi � X would not
contribute because they ‘‘see’’ the mirror’s motion at frequency X as a quasi-static
perturbation, and indeed the dissipative Casimir force originates from low-fre-
quency modes for which the motion is non-adiabatic. But there is a more illu-
minating interpretation that explains why the contribution comes precisely from
the frequency interval ½�X; 0�: In Fig. 13.1, we show that this interval corresponds
to the field modes leading to frequency sidebands xo ¼ xi þ X (see Eq. (13.4))
across the border between positive and negative frequencies (for X\0 the cor-
responding interval is ½0;�X� and the analysis is essentially the same). In other
words, for these specific modes the motional frequency modulation leads to
mixing between positive and negative frequencies. Bearing in mind the corre-
spondence between positive (negative) frequencies and annihilation (creation)
operators, this mixing translates into a Bogoliubov transformation coupling output
annihilation operators to input creation ones, and viceversa [71, 72] (examples will
be presented in Sect. 13.4). The important conclusion is that sideband generation
for these modes corresponds to photon creation (and also annihilation in the case
of a general initial field state), whereas outside the interval ½�X; 0�; where no
mixing occurs, the sideband effect corresponds to photon inelastic scattering with
neither creation nor annihilation.

From this discussion, we can also surmise the important property that the
dynamical Casimir photons have frequencies bounded by the mechanical frequency
X; as long as the perturbative non-relativistic approximation holds [26]. Moreover,
the Casimir photons are emitted in pairs, with photon frequencies satisfying x1 þ
x2 ¼ X: Hence the frequency spectrum is symmetrical around X=2; where it has a
maximum for the Dirichlet case [26] but not generally for the Robin b.c. [73].

In short, the derivation of (13.2) from (13.4) highlights the direct connection
between the dissipative dynamical force and the dynamical Casimir photon

Fig. 13.1 For a given mechanical modulation frequency X (assumed to be positive in this
diagram), the field modes contributing to the dissipative dynamical Casimir effect lie in the
interval ½�X; 0�; which corresponds to negative input field frequencies xi; yielding positive
sideband frequencies
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emission effect. The dissipative force thus plays the role of a Casimir radiation
reaction force, damping the mirror’s mechanical energy as Casimir photons are
emitted. In fact, the expression given by (13.2) has the same form as the radiation
reaction force in classical electrodynamics, apart from a dimensionless pre-factor
inversely proportional to the fine-structure constant e2=ð�hcÞ:

The discussion on the field modes actually contributing in (13.4) also allows us
to address the domain of validity of the various assumptions employed in the
derivation presented above. We have assumed in (13.1) that the field vanishes at
the instantaneous mirror’s position, no matter how fast the mirror and field
oscillate. However, the electric currents and charge density inside a real metallic
mirror respond to field and position changes over a finite time scale, so that we
expect our oversimplified model to be physically meaningful only at low fre-
quencies (more general results and discussions are presented in Refs. [14, 74]).
Since the relevant field frequencies are bounded by the mechanical frequencies
(jxij � jXj), the model is consistent as long as typical mechanical frequencies are
much smaller than the frequency scales characterizing the metallic response—
typically the plasma frequency of metals.

A second point to be clarified is the connection between the perturbative linear
approximation employed above and the non-relativistivistic approximation. When
deriving (13.4) from (13.1), we have taken the long-wavelength approximation to
expand the field around x ¼ 0: Let us assume, to simplify the discussion, that the
mirror oscillates with frequency X and amplitude q0: The non-relativistic regime
then translates into Xq0=c� 1 and all relevant field modes correspond to long
wavelengths 2pc=xi � q0 since they satisfy the inequality jxij �X: More gen-
erally, the long-wavelength approximation follows from the non-relativistic con-
dition provided that there is an inertial reference frame for which the motion is
spatially bounded.

13.2.2 Casimir-Driven Decoherence

As in classical Brownian motion, the dissipative effect is closely related to the
fluctuations provided by the reservoir, which in our case is the quantum vacuum
field. This connection provides yet another tool for computing the dissipative
Casimir force: by using linear response theory, one can derive (13.7) from the
correlation function of the force on a static plate [14]. (This method has been
employed for different geometries in 3D [13, 19, 20, 30]). More interestingly, if we
take the mirror’s position as a full dynamical observable rather than a prescribed
function of time, vacuum radiation pressure plays the role of a Langevin fluctu-
ating force [3, 66], leading to diffusion in phase space, which adds to the asso-
ciated average dissipative force (13.7).

Let us first analyze the mechanical effect of the dissipative Casimir force in the
context of classical dynamics. We consider a point-like mirror of mass M in a
harmonic potential well of frequency X: Taking the Casimir dissipative force given
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by (13.7) into account, and neglecting for the time being any associated stochastic
force, we write the mirror’s equation of motion as

d2qðtÞ
dt2

¼ �X2qðtÞ þ �h

6pMc2

d3qðtÞ
dt3

: ð13:9Þ

We assume that the oscillator’s zero-point energy �hX=2 is much smaller than the
rest mass energy Mc2; and then find oscillatory solutions of (13.9) which are
damped at the rate

C ¼ 1
12p

�hX
Mc2

X� X: ð13:10Þ

This result provides a good illustration of how weak the Casimir dissipation is for a
single mirror in a vacuum. On the other hand, the associated diffusion in phase
space is more relevant, particularly in the context of the full quantum theory
discussed below, since it provides an efficient decoherence mechanism for non-
classical quantum states.

The quantum description of the mirror’s dynamics can be developed from the
Hamiltonian for the radiation pressure coupling with a dispersive semi-transparent
mirror (transparency frequency xc) [75]. One derives a master equation for the
reduced density operator q of the mirror, which can also be cast in the form of a
Fokker–Planck equation for the Wigner function Wðx; p; tÞ representing the mirror
quantum state [4, 5]:

otW ¼ �ð1� DM=MÞ p

M
oxW þMX2xopW þ 2CoxðxWÞ þ D1

o2W

ox2
� D2

o2W

oxop
:

ð13:11Þ

The time-dependent coefficients DM (mass correction), C (damping coefficient),
D1 and D2 (diffusion coefficients) are written in terms of the correlation function of
the field linear momentum operator. The perfectly reflecting limit corresponding to
(13.1) is obtained when X� xc; in line with our previous discussion since 1=xc

represents the characteristic time scale for the material medium response. In this
limit, for tJ1=xc; CðtÞ rapidly approaches the expected constant value as given
by (13.10), whereas D1ðtÞ approaches the asymptotic value

D1 ¼ �hC=ðMXÞ ð13:12Þ

for tJ2p=X: This connection between diffusion and damping plays the role of a
fluctuation-dissipation theorem for the vacuum state (zero temperature).

Under the time evolution described by the Fokker–Planck equation (13.11), an
initially pure state gradually evolves into a statistical mixture. The physical reason
behind this decoherence effect is the buildup of entanglement between the mirror
and the field due to the radiation pressure coupling and the associated dynamical
Casimir photon creation [4, 5]. As an example of initial state, we consider the
‘‘Schrödinger’s cat’’ superposition of coherent states jwi ¼ ðjai þ j � aiÞ=

ffiffiffi
2
p

with
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the amplitude a ¼ iP0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�hx0
p

along the imaginary axis (	P0 are the average
momenta corresponding to each state’s component). The corresponding Wigner
function Wðx; pÞ contains an oscillating term proportional to cosð2P0x=�hÞ which
represents the coherence of the superposition. Clearly, the diffusion term pro-
portional to D1 in (13.11) will wash out these oscillations along the position axis,
thus transforming the cat state into a mixture of the two coherent states. From
(13.11) and (13.12), the corresponding decoherence time scale is

td ¼
�h2

2P2
0D1
¼ 4

dp

2P0

� �2

C�1; ð13:13Þ

where dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�hX=2

p
is the momentum uncertainty of the coherent state (we have

assumed that Xtd � 1). Since 2P0 measures the distance between the two com-
ponents in phase space, (13.13) shows that decoherence is stronger when the state
components are further apart, corresponding to thinner interference fringes in
phase space. Decoherence from entanglement driven by dynamical Casimir photon
creation is thus very effective for macroscopic superpositions in spite of the
smallness of the corresponding damping coefficient C: As the radiation pressure
control of microresonators improves all the way to the quantum level [76, 77],
Casimir driven decoherence might eventually become of experimental relevance.

13.2.3 3D Models

The orders of magnitude can be reliably assessed only by considering the real-
world three-dimensional space. We start with the simplest geometry in 3D: a plane
mirror parallel to the xy plane, of area A and moving along the z-axis. For an
infinite plane, we expect the dissipative Casimir force to be proportional to A, so
that we have to modify (13.2) to include a squared length. For a scalar field
satisfying a Dirichlet b.c. analogous to (13.1), the derivation is very similar to the
one outlined above [7]:

f ðtÞ ¼ ��hAqð5ÞðtÞ
360p2c4

: ð3D; scalarÞ ð13:14Þ

For the electromagnetic field, the model of perfect reflectivity provides an
accurate description of metallic mirrors at low frequencies. For a mirror moving
along the z-axis, the electric and magnetic fields in the instantaneously co-moving
Lorentz frame S0 satisfy

Ẑ
 E0jmirror ¼ 0; Ẑ � B0jmirror ¼ 0: ð13:15Þ

It is useful to decompose the fields into transverse electric (TE) and transverse
magnetic (TM) polarizations (where ‘transverse’ means perpendicular to the

incidence plane defined by Ẑ and the propagation direction). For the TE
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component, we define the vector potential in the usual way: EðTEÞ ¼ �otA
ðTEÞ;

BðTEÞ ¼ r 
 AðTEÞ under the Coulomb gauge r � AðTEÞ ¼ 0: Since AðTEÞ � Ẑ ¼ 0;

AðTEÞ is invariant under the Lorentz boost from the co-moving frame to the lab-
oratory frame. The resulting b.c. is then similar to (13.1):

AðTEÞðx; y; qðtÞ; tÞ ¼ 0: ð13:16Þ

On the other hand, AðTMÞ has a component along the z-axis, so that the Coulomb
gauge is no longer invariant under the Lorentz boost, resulting in complicated b.c.
also involving the scalar potential. It is then convenient to define a new vector

potential AðTMÞ as

EðTMÞ ¼ $
AðTMÞ; BðTMÞ ¼ otA
ðTMÞ

under the gauge $ �AðTMÞ ¼ 0: Like AðTEÞ;AðTMÞ is also invariant under Lorentz

boosts along the z-axis. From (13.15), one derives that AðTMÞ satisfies a Neumann
b.c. at the co-moving frame, yielding

oz þ _qðtÞot þ Oð _q2Þ
� �

AðTMÞðx; y; qðtÞ; tÞ ¼ 0: ð13:17Þ

The condition of perfect reflectivity then results in two independent problems: a
Dirichlet b.c. for TE modes, and a Neumann b.c. in the instantaneously co-moving
frame for TM modes. The TM contribution turns out to be 11 times larger than the
TE one, which coincides with (13.14). The resulting dissipative force is then [78]

f ðtÞ ¼ ��hAqð5ÞðtÞ
30p2c4

: ð3D, electromagneticÞ ð13:18Þ

As in the 1D case, the dissipative Casimir force plays the role of a radiation
reaction force, associated with the emission of photon pairs with wave-vectors
satisfying the conditions jk1j þ jk2j ¼ X=c and k1k ¼ �k2k from translational
symmetry parallel to the plane of the mirror. The angular distribution of emitted
photons displays an interesting correlation with polarization: TE photons are
preferentially emitted near the normal direction, whereas TM ones are preferen-
tially emitted at larger angles, near a grazing direction if the frequency is smaller
than X=2 [27].

Results beyond the model of perfect reflection were obtained in Ref. [79] for a
dielectric half-space (see also Ref. [80] for the angular and frequency spectra of
emitted photons). In this case, there is also photon emission (and the associated
dissipative radiation reaction force) if the dielectric mirror moves sideways, or if a
dielectric sphere rotates around a diameter [81]. We will come back to this type of
arrangement when discussing non-contact quantum friction in the next section.

To conclude this section, we compute the total photon production rate for a
perfectly reflecting oscillating mirror directly from (13.18). By energy conserva-
tion, the total radiated energy is the negative of the work done on the mirror by the
dissipative Casimir force:
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E ¼ �
Z1

�1

f ðtÞqð1ÞðtÞdt: ð13:19Þ

We evaluate the integral in (13.19) using the result (13.18) for an oscillatory
motion of frequency X and amplitude q0 exponentially damped over a time scale
T � 1=X : E ¼ �hTAq2

0X
6=ð120p2c4Þ: Since the spectrum is symmetrical with

respect to the frequency X=2; we can derive the number of photons N from the
radiated energy using the relation E ¼ N�hX=2: The total photon production rate is
then given by

N

T
¼ 1

15
A

k2
0

vmax

c

� �2
X ð13:20Þ

with vmax � Xq0 and k0 � 2pc=X representing the typical scale of the relevant
wavelengths. With vmax=c� 10�7; X=ð2pÞ� 10 GHz and A� k2

0� 10 cm2; we
find N=T � 10�5 photons/s or approximately one photon pair every two days!

The dynamical Casimir effect is clearly very small for a single oscillating
mirror. Adding a second parallel plane mirror, the photon production rate is

enhanced by a factor ðXL=cÞ�2� 106 for separation distances L in the sub-
micrometer range [29]. But at such short distances, finite conductivity of the
metallic plates, not considered so far, is likely to reduce the photon production
rate. In this type of arrangement, a much larger effect is obtained by consid-
ering the shear motion of one plate relative to the other (instead of a relative
motion along the normal direction). As discussed in the next section, because of
finite conductivity a large friction force is predicted at short distances, which
results from the creation of pairs of excitations inside the metallic medium [24,
82]. As for the emission of photon pairs, the orders of magnitude are more
promising when considering a closed cavity with moving walls, to be discussed
in Sect. 13.4.

13.3 Quantum Friction

There is an intimate connection between the dynamical Casimir effect and the
possibility that electrically neutral bodies in relative motion may experience non-
contact friction due to quantum vacuum fluctuations, the so-called ‘‘quantum
friction’’. As we have discussed in the previous section, dielectric bodies in
accelerated motion radiate Casimir photons. Shear motion of two bodies, even at
constant relative speed, can also radiate energy. Just as in the case of a single
accelerated mirror in a vacuum, shear motion cannot be removed by a change of
reference frame. A frictional force between two perfectly smooth parallel planes
shearing against each other with a relative velocity v results from the exchange of
photons between the two surfaces. These photons carry the information of the
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motion of one surface to the other one, and as a result linear momentum is
exchanged between the plates, leading to friction.

In order to illustrate the physics of quantum friction we will follow here an
approach due to Pendry [24] who considered the simplest case of zero temperature
and the non-retarded (van der Waals) limit. The nice feature of this approach is
that it manifestly connects to the intuitive picture of motion-induced (virtual)
photons as mediators of momentum exchange between the shear surfaces. A
dielectric surface, although electrically neutral, experiences quantum charge
fluctuations, and these have corresponding images on the opposing dielectric
surface. Since the surfaces are in relative parallel motion, the image lags behind
the fluctuating charge distribution that created it, and this results in a frictional van
der Waals force. Note that for ideal perfect metals, the image charges arrange
themselves instantaneously (do not lag behind), and therefore no quantum friction
is expected in this case.

We model each of the dielectric surfaces as a continuum of oscillators with
Hamiltonian

Ĥa ¼
X

kj

�hxa;kjðâya;kjâa;kj þ 1=2Þ; ð13:21Þ

where âya;kj and âa;kj are creation and annihilation bosonic operators associated
with the upper (a ¼ u) or lower (a ¼ l) plate. Each mode on each surface is
defined by k, which is a wave-vector parallel to the planar surface, and by j,
which denotes degrees of freedom perpendicular to the surface. Following
Pendry we restrict ourselves to the non-retarded limit (very long wavelengths
for the EM modes). In this limit the EM field is mainly electrostatic, only the
static TM polarization matters for a dielectric surface (since the static TE field
is essentially a magnetic field that does not interact with the non-magnetic
surface), and the intensity decays exponentially from the surfaces (evanescent
fields). The coupling between the oscillator modes belonging to different sur-
faces is mediated by the EM field, and it is assumed to be a position–position
interaction of the form

ĤintðtÞ ¼
X
kjj0

Ckjj0 ðdÞx̂u;kj � x̂l;�kj0 e�ikxvt: ð13:22Þ

In the non-relativistic limit the effect of the surfaces shearing with speed v along
the x direction is contained in the last exponential factor. This type of Hamiltonian
follows from the effective electrostatic interaction between the fluctuating charges
in the dielectrics and its expansion to lowest order in the displacement of each
oscillator from its equilibrium position (equivalently, it also follows from the non-
retarded and static limit of the dipole–dipole interactions between fluctuating
dipoles in each surface). The coupling factors Ckjj0 ðdÞ can be obtained by ana-
lyzing how each oscillator dissipates energy into the vacuum gap. This is done in
Ref. [24] in two ways, by invoking a scattering type of approach relating the fields
at the interphases with reflection amplitudes, and by considering how the
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fluctuating charge distributions in each surface dissipate energy. The result is
Ckjj0 ðdÞ ¼ ðbkjbkj0=2ke0Þe�jkjd; where

b2
kj ¼

dN

dx

� ��1 4kxe0

p
Im

eðxÞ � 1
eðxÞ þ 1

	 

: ð13:23Þ

Note the exponential decay due to the evanescent nature of the EM field. In this
equation dN=dx is the density of oscillator modes at frequency x and eðxÞ is the
complex dielectric permittivity of the plates (assumed to be identical). Although
the interaction Hamiltonian does not depend explicitly on the quantized EM field
(because this derivation is semiclassical), one can infer the quantum processes of
creation and absorption that take place by expanding the product x̂u;kj � x̂l;�kj0 :

x̂u;kj � x̂l;�kj0 ¼ �
1
2
½âyu;kj � âu;kj� � ½âyl;�kj0 � âl;�kj0 �: ð13:24Þ

Imagine the system of the two dielectrics is initially in the ground state at zero
temperature, jwðt ¼ 0Þi ¼ jwgiu � jwgil; where jwgia ¼

Q
kj jwg;kjia is the product

of the harmonic oscillators’ ground states for surface a: Eq. (13.24) implies that two
motion-induced virtual photons created from an EM vacuum produce one excitation
in each surface, i.e., there is a non-zero probability of transition to states j1; kjiu �
j1;�kj0il: The transition probability can be computed using time-dependent per-
turbation theory for the perturbation HintðtÞ: To first order, the transition probability
from the ground state into each of these two-excitation states is

Pkjj0 ðtÞ ¼
b2

kjb
2
kj0

4k2e2
0

e�2djkj

4xu;kjxl;�kj

4 sin2½ðxu;kj þ xl;�kj0 � kxvÞt=2�
ðxu;kj þ xl;�kj0 � kxvÞ2

: ð13:25Þ

In the limit of large times (t!1) we use that sin2ðXt=2Þ=ðX=2Þ2  ptdðXÞ (here
dðXÞ is Dirac’s delta function), and therefore the transition probability grows
linearly in time. We can find the frictional force equating the frictional work Fxv
with the rate of change in time of the energy of the excitations, namely

Fxv ¼ dU

dt
¼
X
kjj0

�hðxu;kj þ xl;�kj0 Þ
dPkjj0

dt
; ð13:26Þ

and the r.h.s. is time-independent since the transition probabilities grow linearly in
time. Using the expression (13.23) for b2

kj and the transition probabilities (13.25) at

large times, and writing the sums over the dielectric degree of freedom j as
P

j ¼R1
0 dxdN=dx (and similarly for j0), one finally obtains the following expression

for the frictional force

Fx ¼
�h

p

Z
d2k

ð2pÞ2
kxe�2jkjd

Zkxv

0

dx Im
eðxÞ � 1
eðxÞ þ 1

	 

Im

eðkxv� xÞ � 1
eðkxv� xÞ þ 1

	 

: ð13:27Þ
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In the literature there are other more rigorous approaches to calculate quantum
friction that go beyond the non-retarded quasi-static limit considered above, and
that can take into account effects of relativistic motion as well as finite tem-
perature. One of these approaches [83] follows the spirit of the Lifshitz–Rytov
theory [84], considering the fluctuating electromagnetic (EM) field as a classical
field whose stochastic fluctuations satisfy the fluctuation-dissipation relation that
relates the field fluctuations with the absorptive part of the dielectric response of
the plates. The EM field is a solution to Maxwell’s equations with classical
fluctuating current densities on the plates as source fields, and it satisfies the
usual EM b.c. imposed on the comoving reference frames on each plate. The
relation between the EM fields in different frames is obtained via Lorentz
transformations. An alternative full quantum-mechanical approach considers the
quantum EM field in interaction with (quantized) noise polarizations and noise
currents within the plates [85]. As before, the fields in each reference frame are
related by Lorentz transformations. In this approach the quantum expectation
value of the noise currents is given by the (quantum) fluctuation-dissipation
relation.

Quantum friction can also happen for neutral atoms moving close to surfaces.
The theoretical methods to compute the frictional force in these cases are similar to
the surface–surface quantum friction, and we refer the reader to some of the
relevant works [86–88]. See also the Chap. 11 by Intravaia et al. in this volume for
additional discussions of quantum friction in the atom-surface context.

13.4 Resonant Photon Creation in Time Dependent Cavities

As mentioned in the Introduction, photon creation can be enhanced in closed
cavities: if the external time dependence involves a frequency that is twice the
frequency of a mode of the electromagnetic field in the (unperturbed) cavity,
parametric amplification produces a large number of photons. As we will see,
under certain circumstances (ideal three dimensional cavities with non equidistant
frequencies in the spectrum) the number of photons in the resonant mode may
grow exponentially. Parametric amplification can take place by changing the
length of the cavity with a moving surface, but also by changing its effective length
through time dependent electromagnetic properties of the cavity.

In order to simplify the notation, in this section we will use the natural units
�h ¼ c ¼ 1:

13.4.1 Dynamical Casimir Effect in 1D Cavities

As in Sect. 13.2, we start with a massless real scalar field in a 1D cavity with one
mirror fixed at x ¼ 0 and the other performing an oscillatory motion
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LðtÞ ¼ L0½1þ e sinðXtÞ�; ð13:28Þ

where X is the external frequency and e� 1: As we will be mainly concerned with
situations where XL0 ¼ Oð1Þ; the maximum velocity of the mirror will be of order
e; and therefore small values of e correspond to a non-relativistic motion of the
mirror. We shall assume that the oscillations begin at t ¼ 0; end at t ¼ T ; and that
LðtÞ ¼ L0 for t\0 and t [ T : The scalar field /ðx; tÞ satisfies the wave equation
and Dirichlet b.c. /ðx ¼ 0; tÞ ¼ /ðLðtÞ; tÞ ¼ 0: When the mirror is at rest, the
eigenfrequencies are multiples of the fundamental frequency p=L0: Therefore, in
order to analyze resonant situations we will assume that X ¼ qp=L0;
q ¼ 1; 2; 3; . . .:

Inside the cavity we can write

/ðx; tÞ ¼
X1
k¼1

akwkðx; tÞ þ aykw
�
kðx; tÞ

h i
; ð13:29Þ

where the mode functions wkðx; tÞ are positive frequency modes for t\0; and ak

and ayk are time-independent bosonic annihilation and creation operators, respec-
tively. The field equation is automatically verified by writing the modes in terms of
Moore’s function RðtÞ [8] as

wkðx; tÞ ¼
iffiffiffiffiffiffiffiffi
4pk
p e�ikpRðtþxÞ � e�ikpRðt�xÞ

� �
: ð13:30Þ

The Dirichlet boundary condition is satisfied provided that RðtÞ satisfies Moore’s
equation

Rðt þ LðtÞÞ � Rðt � LðtÞÞ ¼ 2: ð13:31Þ

These simple expressions for the modes of the field are due to conformal invari-
ance, a symmetry for massless fields in one spatial dimension.

The solution to the problem involves finding a solution RðtÞ in terms of the
prescribed motion LðtÞ: For t\0 the positive frequency modes are given by RðtÞ ¼
t=L0 for �L0� t� L0; which is indeed a solution to Eq. (13.31) for t\0: For t [ 0;
Eq. (13.31) can be solved, for example, using a perturbative expansion in e similar
to the one employed in Sect. 13.2 for a single mirror. However, as the external
frequency is tuned with the unperturbed modes of the cavity, in general there will
be resonant effects, which produce secular terms proportional to emðXtÞn with
m� n: Thus this expansion is valid only for short times eXt� 1: It is possible to
obtain a non-perturbative solution of Eq. (13.31) using Renormalization Group
(RG) techniques [39]. The RG-improved solution automatically adds the most
secular terms, ðeXtÞn; to all orders in e; and is valid for longer times e2Xt� 1: The
RG-improved solution is [39, 89]

RðtÞ ¼ t

L0
� 2

pq
Im ln 1þ nþ ð1� nÞe

iqpt
L0

h i
; ð13:32Þ
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where n ¼ exp½ð�1Þqþ1pqet=L0�:As shown in Fig. 13.2, the function RðtÞ develops a
staircase shape for long times [39, 90]. Within regions of t between odd multiples of
L0 there appear q jumps, located at values of t satisfying cosðqpt=L0Þ ¼ �1: the
upper sign corresponding to even values of q and the lower one to odd values of q.

The vacuum expectation value of the energy density of the field is given by [10]
hT00ðx; tÞi ¼ �f ðt þ xÞ � f ðt � xÞ; where

f ¼ 1
24p

R000

R0
� 3

2
R00

R0

� �2

þp2

2
ðR0Þ2

" #
: ð13:33Þ

For q ¼ 1 (‘‘semi-resonant’’ case) no exponential amplification of the energy
density is obtained, whereas for q� 2 (‘‘resonant’’ cases) the energy density grows
exponentially in the form of q traveling wave packets which become narrower and
higher as time increases (see Fig. 13.3). Note that, as the energy density involves
the derivatives of the function RðtÞ; there is one peak for each jump of RðtÞ:

The number of created particles can be computed from the solution given by
Eq. (13.32). Photons are created resonantly in all modes with n ¼ qþ 2j; with j a
non-negative integer. This is due to the fact that the spectrum of a one dimensional
cavity is equidistant: although the external frequency resonates with a particular
eigenmode of the cavity, intermode coupling produces resonant creation in the
other modes. At long times, the number of photons in each mode grows linearly in
time, while the total number of photons grows quadratically and the total energy
inside the cavity grows exponentially [35]. These different behaviors are due to the
fact that the number of excited modes, i.e. the number of modes that reach a
growth linear in time, increases exponentially.

The production of massless particles in one dimensional cavities has been
analyzed numerically in Ref. [91]. As expected, the numerical evaluations are in
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Fig. 13.2 R(t) vs. t=L0 as
given by Eq. (13.32). The
values of the parameters are
q ¼ 4 and e ¼ 0:01
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perfect agreement with the analytic results described above in the case of small
amplitudes e� 0:01:

The force on the moving mirror can be computed as the discontinuity of hT11i at
x ¼ LðtÞ: The force produced by the outside field is one-half the expression
derived in Sect. 13.2. This is much smaller than the intracavity contribution and
will be neglected. Therefore

hFi  hT11ðLðtÞ; tÞi ¼ hT00ðLðtÞ; tÞi; ð13:34Þ

where the energy momentum tensor is evaluated inside the cavity. This expression
reproduces the usual attractive result when the mirror is at rest (t\0)

hFi ¼ � p

24L2
0

; ð13:35Þ

that is, the static Casimir effect in 1D. However, at long times it becomes an expo-
nentially increasing pressure due to the presence of real photons in the cavity [35].

All this treatment can be extended to the case of Neumann b.c. nlol/jmirror ¼ 0;
where nl is a unit two-vector perpendicular to the trajectory of the mirror. The
modes of the field can be written in terms of Moore’s function RðtÞ as

/kðx; tÞ ¼
1ffiffiffiffiffiffiffiffi
4pk
p e�ikpRðtþxÞ þ e�ikpRðt�xÞ

� �
: ð13:36Þ

Note the change of sign between Eq. (13.30) for Dirichlet modes, and Eq. (13.36)
for Neumann modes. The spectrum of motion-induced photons is the same for both
Dirichlet and Neumann b.c. [68], but not for the mixed configuration with one
Dirichlet mirror and one Neumann mirror [92]. The one dimensional DCE has also
been investigated for cavities with Robin b.c. [93].
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Fig. 13.3 Energy density
profile between plates for
fixed time t=L0 ¼ 20:4 for the
q ¼ 4 case. The amplitude
coefficient is e ¼ 0:01
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13.4.2 Photon Creation in 3D Cavities

The one dimensional DCE with Dirichlet b.c. described in the previous section is
not only of academic interest: it describes photon creation for the TEM modes in a
3D cylindrical cavity with a non-simply connected section [38]. However, in order
to analyze TE and TM modes in general 3D cavities, a new approach is needed,
since conformal invariance is no longer useful in 3D.

We shall first describe in some detail the simpler case of a scalar field in a
rectangular cavity satisfying Dirichlet b.c. [36], and then comment on the exten-
sion to the case of the electromagnetic field in cylindrical cavities with an arbitrary
section.

13.4.2.1 Scalar Field

We consider a rectangular cavity formed by perfectly reflecting walls with
dimensions Lx;Ly; and Lz: The wall placed at z ¼ Lz is at rest for t\0 and begins
to move following a given trajectory, LzðtÞ; at t ¼ 0: We assume this trajectory as
prescribed for the problem (not a dynamical variable) and that it works as a time-
dependent boundary condition for the field. The field /ðx; tÞ satisfies the wave
equation and the b.c. /jwalls ¼ 0 for all times. The Fourier expansion of the field
for an arbitrary moment of time, in terms of creation and annihilation operators,
can be written as

/ðx; tÞ ¼
X

n

âin

nunðx; tÞ þ H.c:; ð13:37Þ

where the mode functions unðx; tÞ form a complete orthonormal set of solutions of
the wave equation with vanishing b.c..

When t� 0 (static cavity) each field mode is determined by three positive
integers nx; ny and nz; namely

unðx; t\0Þ ¼ 1ffiffiffiffiffiffiffiffi
2xn

p
ffiffiffiffiffi
2
Lx

r
sin

nxp
Lx

x

� � ffiffiffiffiffi
2
Ly

s
sin

nyp
Ly

y

� �



ffiffiffiffiffi
2
Lz

s
sin

nzp
Lz

z

� �
e�ixkt; ð13:38Þ

with xn ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx
Lx

� �2
þ ny

Ly

� �2
þ nz

Lz

� �2
r

:

When t [ 0 the boundary condition on the moving wall becomes /ðx; y; z ¼
LzðtÞ; tÞ ¼ 0: In order to satisfy it we expand the mode functions in Eq. (13.37)
with respect to an instantaneous basis [94]
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unðx; t [ 0Þ ¼
X

m

QðnÞm ðtÞ
ffiffiffiffiffi
2
Lx

r
sin

mxp
Lx

x

� � ffiffiffiffiffi
2
Ly

s
sin

myp
Ly

y

� �



ffiffiffiffiffi
2
Lz

s
sin

mzp
LzðtÞ

z

� �
¼
X

m

QðnÞm ðtÞumðx; LzðtÞÞ; ð13:39Þ

with the initial conditions

QðnÞm ð0Þ ¼
1ffiffiffiffiffiffiffiffi
2xn

p dm;n ; _QðnÞm ð0Þ ¼ �i

ffiffiffiffiffiffi
xn
p

2
dm;n: ð13:40Þ

In this way we ensure that, as long as LzðtÞ and _LzðtÞ are continuous at t ¼ 0; each
field mode and its time derivative are also continuous functions. The expansion in
Eq. (13.39) for the field modes must be a solution of the wave equation. Taking
into account that the uk’s form a complete and orthonormal set and that they
depend on t only through LzðtÞ; we obtain a set of (exact) coupled equations for

QðnÞm ðtÞ [36]:

€QðnÞm þ x2
mðtÞQðnÞm ¼ 2kðtÞ

X
j

gmj
_QðnÞj þ _kðtÞ

X
j

gmjQ
ðnÞ
j

þ k2ðtÞ
X

j;l

glmgljQ
ðnÞ
j ; ð13:41Þ

where

xmðtÞ ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx

Lx

� �2

þ my

Ly

� �2

þ mz

LzðtÞ

� �2
s

; kðtÞ ¼
_LzðtÞ
LzðtÞ

: ð13:42Þ

The coefficients gmj are defined by

gmj ¼ �gjm ¼ LzðtÞ
ZLzðtÞ

0

dz
oum

oLz
uj: ð13:43Þ

The annihilation and creation operators âin

m and â
yin

m correspond to the particle
notion in the ‘in’ region (t\0). If the wall stops for t [ tfinal: we can define a new

set of operators, âout

m and â
yout

m ; associated with the particle notion in the ‘out’ region
(t [ tfinal). These two sets of operators are connected by means of the Bogoliubov
transformation

âout

m ¼
X

n

ðâin

nanm þ â
yin

n b�nmÞ: ð13:44Þ

The coefficients anm and bnm can be obtained as follows. When the wall returns to
its initial position the right hand side in Eq. (13.41) vanishes and the solution is
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QðnÞm ðt [ tfinalÞ ¼ AðnÞm eixmt þ BðnÞm e�ixmt; ð13:45Þ

with AðnÞm and BðnÞm being some constant coefficients to be determined by the continuity
conditions at t ¼ tfinal: Inserting Eq. (13.45) into Eqs.(13.37) and (13.39) we obtain

an expansion of / in terms of âin

m and â
yin

m for t [ tfinal: Comparing this with the

equivalent expansion in terms of âout

m and â
yout

m it is easy to see that

anm ¼
ffiffiffiffiffiffiffiffiffi
2xm

p
BðnÞm ; bnm ¼

ffiffiffiffiffiffiffiffiffi
2xm

p
AðnÞm : ð13:46Þ

The amount of photons created in the mode m is the average value of the

number operator â
yout

m âout

m with respect to the initial vacuum state (defined through
âin

mj0ini ¼ 0). With the help of Eqs. (13.44) and (13.46) we find

hNmi ¼ h0in j âyout

m âout

m j 0ini ¼
X

n

2xmjAðnÞm j
2: ð13:47Þ

In the approach described so far we worked at the level of the dynamical
equation for the quantum scalar field. Alternatively, one can analyze the problem
using the effective Hamiltonian method developed in Ref. [95]. The idea is the
following. Assume that a massless scalar field is confined within a time dependent
volume and satisfies Dirichlet b.c.. At the classical level, the field can be expanded
in terms of a basis of functions faðx; tÞ that fulfill the b.c. at each time, that is

/ðx; tÞ ¼
X

a

qaðtÞfaðx; tÞ: ð13:48Þ

For the rectangular cavities considered in this section these functions can be
chosen to be umðx; LzðtÞÞ: Inserting this expansion into the Klein–Gordon
Lagrangian, one ends up with a Lagrangian for the generalized coordinates qaðtÞ;
which is a quadratic function of qaðtÞ and _qaðtÞ; i.e. it describes a set of coupled
harmonic oscillators with time dependent frequencies and couplings. This system
can be quantized following the usual procedure, and the final results for the
number of created photons are equivalent to those obtained in Eq. (13.47).

13.4.2.2 Parametric Amplification in 3D

As in Sect. 13.4.1, we are interested in resonant situations where the number of
photons created inside the cavity could be enhanced for some specific external
frequencies. So we study the trajectory given in Eq. (13.28). To first order in e; the
equations for the modes Eq. (13.41) take the form

€QðnÞm þ x2
mQðnÞm ¼2e

pmz

Lz

� �2

sinðXtÞQðnÞm � eX2 sinðXtÞ
X

j

gmjQ
ðnÞ
j

þ 2eX cosðXtÞ
X

j

gmj
_QðnÞj þ Oðe2Þ: ð13:49Þ
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It is known that a naive perturbative solution of these equations in powers of the

displacement e breaks down after a short amount of time, of order ðeXÞ�1: As in
the 1D case discussed in the previous section, this happens for those particular
values of the external frequency X such that there is a resonant coupling with the
eigenfrequencies of the static cavity. In this situation, to find a solution valid for
longer times (of order e�2X�1) we proceed as follows. We assume that the solution
of Eq. (13.49) is of the form

QðnÞm ðtÞ ¼ AðnÞm ðtÞeixmt þ BðnÞm ðtÞe�ixmt; ð13:50Þ

where the functions AðnÞm and BðnÞm are slowly varying. In order to obtain differential
equations for them, we insert this ansatz into Eq. (13.49) and neglect second-order

derivatives of AðnÞm and BðnÞm : After multiplying the equation by e	ixmt we average
over the fast oscillations. The resulting equations are

1
e

dAðnÞm

dt
¼ � p2m2

z

2xmL2
z

BðnÞm dð2xm � XÞ

þ
X

j

ð�xj þ
X
2
Þdð�xm � xj þ XÞ X

2xm
gkjB

ðnÞ
j

þ
X

j

ðxj þ
X
2
Þdðxm � xj � XÞ þ ðxj �

X
2
Þdðxm � xj þ XÞ

	 



 X
2xm

gmjA
ðnÞ
j ; ð13:51Þ

and

1
e

dBðnÞm

dt
¼ �

p2m2
z

2xmL2
z

AðnÞm dð2xm � XÞ

þ
X

j

ð�xj þ
X
2
Þdð�xm � xj þ XÞ X

2xm
gmjA

ðnÞ
j

þ
X

j

ðxj þ
X
2
Þdðxm � xj � XÞ þ ðxj �

X
2
Þdðxm � xj þ XÞ

	 



 X
2xm

gmjB
ðnÞ
j ; ð13:52Þ

where we used the notation dðxÞ for the Kronecker d-function dx0:
The method used to derive these equations is equivalent to the ‘‘multiple scale

analysis’’ [96] and to the slowly varying envelope approximation [97]. The
equations are non-trivial (i.e., lead to resonant behavior) if X ¼ 2xm (resonant
condition). Moreover, there is intermode coupling between modes j and m if any
of the conditions jxm 	 xjj ¼ X is satisfied.
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We derived the equations for three dimensional cavities. It is easy to obtain the
corresponding ones for one dimensional cavities. The conditions for resonance and
intermode coupling are the same. The main difference is that for one dimensional
cavities the spectrum is equidistant. Therefore an infinite set of modes may be
coupled. For example, when the external frequency is X ¼ 2x1; the mode m is
coupled with the modes m	 2: This has been extensively studied in the literature
[35, 39, 98, 99].

In what follows we will be concerned with cavities with non-equidistant
spectrum. Eqs.(13.51) and (13.52) present different kinds of solutions depending
both on the mirror’s frequency and the spectrum of the static cavity. In the simplest
‘parametric resonance case’ the frequency of the mirror is twice the frequency of

some unperturbed mode, say X ¼ 2xm: In order to find AðnÞm and BðnÞm from Eqs.
(13.51) and (13.52) we have to analyze whether the coupling conditions jxm 	
xjj ¼ X can be satisfied or not. If we set X ¼ 2xm; the resonant mode m will be
coupled to some other mode j only if xj � xm ¼ X ¼ 2xm: Clearly, the latter
relation will be satisfied depending on the spectrum of the particular cavity under
consideration.

Let us assume that this condition is not fullfilled. In this case, the equations for

AðnÞm and BðnÞm can be easily solved and give

hNmi ¼ sinh2 1
X

mzp
Lz

� �2

etf

" #
: ð13:53Þ

In this uncoupled resonance case the average number of created photons in the
mode m increases exponentially in time. Another way of looking at this particular
situation is to note that, neglecting the intermode couplings, the amplitude of the
resonant mode satisfies the equation of an harmonic oscillator with time dependent
frequency. For the particular trajectory given in Eq. (13.28), the dynamics of the
mode is governed by Eq. (13.49) with gmj ¼ 0; that is

€QðnÞm þ x2
m � 2e

pmz

Lz

� �2

sinðXtÞ
" #

QðnÞm ¼ 0; ð13:54Þ

which is the well known Mathieu equation [96]. The solutions to this equation
have an exponentially growing amplitude when X ¼ 2xm:

There are simple situations in which there is intermode coupling. For instance
for a cubic cavity of size L, the fundamental mode (1,1,1) is coupled to the mode
(5,1,1) when the external frequency is X ¼ 2x111: In this case the number of
photons in each mode grows with a lower rate than that of the uncoupled case [36]

hN111i ’ hN511i ’ e0:9etf =L: ð13:55Þ

We will describe some additional examples of intermode coupling in the next
subsection, in the context of a full electromagnetic model.
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It is worth stressing that the creation of scalar particles in 3D cavities has been
studied numerically in Ref. [100]. At long times, the numerical results coincide
with the analytical predictions derived from Eqs. (13.51) and (13.52), both in the
presence and absence of intermode coupling.

13.4.2.3 The Electromagnetic Case

The previous results have been generalized to the case of the electromagnetic field
inside a cylindrical cavity, with an arbitrary transversal section [38]. Let us assume
that the axis of the cavity is along the z-direction, and that the caps are located at
z ¼ 0 and z ¼ LzðtÞ: All the surfaces are perfect conductors.

When studying the electromagnetic field inside these cavities it is convenient to

express the physical degrees of freedom in terms of the vector potentials AðTEÞ and

AðTMÞ introduced in Sect. 13.2.3. These vectors can be written in terms of the so

called ‘‘scalar Hertz potentials’’ as AðTEÞ ¼ Ẑ
r/TE and AðTMÞ ¼ Ẑ
r/TM:
For perfect reflectors the b.c. do not mix TE and TM polarizations, and therefore
the electromagnetic field inside the cavity can be described in terms of these two
independent scalar Hertz potentials: no crossed terms appear in Maxwell’s
Lagrangian or Hamiltonian.

The scalar Hertz potentials satisfy the Klein–Gordon equation. The b.c. of both
potentials on the static walls of the cavity are

/TEjz¼0 ¼ 0;
o/TE

on
transj ¼ 0; ð13:56Þ

o/TM

oz z¼0j ¼ 0; /TMjtrans ¼ 0; ð13:57Þ

where o=on denotes the normal derivative on the transverse boundaries. On the
other hand, the b.c. on the moving mirror has been already discussed in Sect. 13.2
(see Eqs. (13.16) and (13.17)). In terms of the Hertz potentials they read as

/TE
��
z¼LzðtÞ¼ 0; ðoz þ _Lz otÞ/TM

��
LzðtÞ¼ 0: ð13:58Þ

The energy of the electromagnetic field

H ¼ 1
8p

Z
d3xðE2 þ B2Þ ¼ HTE þ HTM ð13:59Þ

can be written in terms of the scalar potentials as

HðPÞ ¼ 1
8p

Z
d3x _/ðPÞð�r2

?Þ _/
ðPÞ þ /ðPÞ

0
ð�r2

?Þ/
ðPÞ0 þ r2

?/ðPÞr2
?/ðPÞ

h i
;

ð13:60Þ
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where dots and primes denote derivatives with respect to time and z respectively.
The supraindex P corresponds to TE and TM and r? denotes the gradient on the
xy plane.

The quantization procedure has been described in detail in previous papers [37,
38, 101]. At any given time both scalar Hertz potentials can be expanded in terms
of an instantaneous basis

/ðPÞðx; tÞ ¼
X

n

aIN
n CðPÞn uðPÞn ðx; tÞ þ c.c:; ð13:61Þ

where aIN
n are bosonic operators that annihilate the IN vacuum state for t\0; and

CðPÞn are normalization constants that must be appropriately included to obtain the
usual form of the electromagnetic Hamiltonian (13.60) in terms of annihilation and
creation operators.

For TE modes, the mode functions are similar to those of the scalar field
satisfying Dirichlet b.c. described in the previous section

uTE
n ¼

X
m

QðnÞm;TEðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=LzðtÞ

p
sin

mzpz

LzðtÞ

� �
vm?ðx?Þ: ð13:62Þ

For TM modes. the choice of the instantaneous basis is less trivial and has been
derived in detail in Ref. [37]

uTM
n ¼

X
m

½QðnÞm;TMðtÞ þ _QðnÞm;TMðtÞgðz; tÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=LzðtÞ

p
cos

mzpz

LzðtÞ

� �
rm?ðx?Þ: ð13:63Þ

Here the index m 6¼ 0 is a vector of non-negative integers. The function gðz; tÞ ¼
_LzðtÞLzðtÞnðz=LzðtÞÞ (where nðzÞ is a solution to the conditions nð0Þ ¼ nð1Þ ¼
oznð0Þ ¼ 0; and oznð1Þ ¼ �1) appears when expanding the TM modes in an
instantaneous basis and taking the small e limit. There are many solutions for nðzÞ;
but all of them can be shown to lead to the same physical results [37]. The mode
functions vm?ðx?Þ and rm?ðx?Þ; are described below for different types of cavities.

The mode functions QðnÞm;TE=TM
satisfy second order, mode-coupled linear dif-

ferential equations similar to Eq. (13.49) [37]. As before, for the ‘‘parametric
resonant case’’ (X ¼ 2xn for some n) there is parametric amplification. Moreover,
for some particular geometries and sizes of the cavities, different modes n and m
can be coupled, provided either of the resonant coupling conditions X ¼ jxn 	
xmj are met. When intermode coupling occurs it affects the rate of photon creation,
typically resulting in a reduction of that rate.

The number of motion-induced photons with a given wavevector n and
polarization TE or TM can be calculated in terms of the Bogoliubov coefficients.
When the resonant coupling conditions are not met, the different modes will not be
coupled during the dynamics. As in the scalar case, the system can be described by
a Mathieu equation (13.54) for a single mode. As a consequence, the number of

442 D. A. R. Dalvit et al.



motion-induced photons in that given mode will grow exponentially. The growth
rate is different for TE and TM modes [37]

hNn;TEðtÞi ¼ sinh2ðkn;TEetÞ; hNn;TMðtÞi ¼ sinh2ðkn;TMetÞ; ð13:64Þ

where kn;TE ¼ n2
z=2xn and kn;TM ¼ ð2x2

n � n2
z Þ=2xn: When both polarizations are

present, the rate of growth for TM photons is larger than for TE photons, i.e.,
kn;TM [ kn;TE: As in the case of the scalar field, these equations are valid for
e2Xt� 1:

We describe some specific examples:
Rectangular section. For a waveguide of length LzðtÞ and transversal rectan-

gular shape (lengths Lx; Ly), the TE mode function is

vnx;nyðx?Þ ¼
2ffiffiffiffiffiffiffiffiffi
LxLy

p cos
nxpx

Lx

� �
cos

nypy

Ly

� �
; ð13:65Þ

with nx and ny non-negative integers that cannot be simultaneously zero. The
spectrum is

xnx;ny;nz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnxp=LxÞ2 þ ðnyp=LyÞ2 þ ðnzp=LzÞ2

q
; ð13:66Þ

with nz� 1: The TM mode function is

rmx;myðx?Þ ¼
2ffiffiffiffiffiffiffiffiffi
LxLy

p sin
mxpx

Lx

� �
sin

mypy

Ly

� �
; ð13:67Þ

where mx;my are positive integers. The spectrum is given by xmx;my;mz ; with mz� 0:
Let us analyze the particular case of a cubic cavity of size L under the para-

metric resonant condition X ¼ 2xk: The fundamental TE mode is doubly
degenerate ((1,0,1) and (0,1,1)) and uncoupled to other modes. The number of
photons in these TE modes grows as expðpet

ffiffiffi
2
p

LÞ: The fundamental TM mode
(1,1,0) has the same energy as the fundamental TE mode, and it is coupled to the
TM mode (1,1,4). Motion-induced TM photons are produced exponentially as
expð4:4et=LÞ; much faster than TE photons.

Circular section. For a waveguide with a transversal circular shape of radius R,
the TE mode function is

vnmðx?Þ ¼
1ffiffiffi
p
p 1

RJnðynmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2=y2

nm

p Jn ynm
q
R

� �
ein/; ð13:68Þ

where Jn denotes the Bessel function of nth order, and ynm is the mth positive root
of the equation J0nðyÞ ¼ 0: The eigenfrequencies are given by

xn;m;nz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ynm

R

� �2
þ nzp

Lz

� �2
s

; ð13:69Þ
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where nz� 1: The TM mode function is

rnmðx?Þ ¼
1ffiffiffi
p
p 1

RJnþ1ðxnmÞ
Jn xnm

q
R

� �
ein/; ð13:70Þ

where xnm is the mth root of the equation JnðxÞ ¼ 0: The spectrum is given by
Eq.(13.69) with ynm replaced by xnm and nz� 0: Denoting the modes by ðn;m; nzÞ;
the lowest TE mode is (1,1,1) and has a frequency x111 ¼ ð1:841=RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2:912ðR=LzÞ2
q

: This mode is uncoupled to any other modes, and the number

of photons in this mode grows exponentially in time as exp ðpet=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:343ðLz=RÞ2

q
LzÞ when parametrically excited. The lowest TM mode (0,1,0)

is also uncoupled and has a frequency x010 ¼ 2:405=R: The parametric growth is
exp ð4:81et=RÞ: For Lz large enough (Lz [ 2:03R), the resonance frequency x111 of
the lowest TE mode is smaller than that for the lowest TM mode. Then the (1,1,1)
TE mode is the fundamental oscillation of the cavity.

13.4.3 Time Dependent Electromagnetic Properties

From a theoretical point of view, it is possible to create photons from the vacuum
not only for a cavity with a moving mirror, but also when the electromagnetic
properties of the walls and/or the media inside the cavity change with time. Given
the difficulties in a possible experimental verification of the DCE for moving
mirrors, the consideration of time dependent properties is not only of academic
interest, but it is also relevant for the analysis of the experimental proposals
discussed in Sect. 13.5

A setup that has attracted both theoretical and experimental attention is the
possibility of using short laser pulses in order to produce periodic variations of
the conductivity of a semiconductor layer placed inside a microwave cavity.
The fast changes in the conductivity induce a periodic variation in the effective
length of the cavity, and therefore the creation of photon pairs [47–50]. This
setup has been analyzed at the theoretical level [51, 102–104], and there is an
ongoing experiment aimed at the detection of the motion induced radiation [53]
(see Sect. 13.5)

For the sake of clarity we discuss in detail the model of a massless scalar field
within a rectangular cavity with perfect conducting walls with dimensions Lx; Ly;
and Lz described in Ref. [51]. At the midpoint of the cavity (x ¼ Lx=2) there is a
plasma sheet. We model the conductivity properties of such material by a delta-
potential with a time dependent strength VðtÞ: This is a time dependent gener-
alization of the model introduced in Ref. [75]. The strength of the potential is
given by

VðtÞ ¼ 4p
e2nðtÞ

m�
; ð13:71Þ

444 D. A. R. Dalvit et al.



where e is the electron charge, m� the electron’s effective mass in the conduction
band and nðtÞ the surface density of carriers. We assume that the irradiation of the
plasma sheet produces changes in this quantity. The ideal limit of perfect con-
ductivity corresponds to V !1; and V ! 0 to a ‘transparent’ material. The
strength of the potential varies between a minimum value, V0; and a maximum
Vmax: The Lagrangian of the scalar field within the cavity is given by

L ¼ 1
2
ol/ol/� VðtÞ

2
dðx� Lx=2Þ/2; ð13:72Þ

where dðxÞ is the one-dimensional Dirac delta function. The use of an infinitely
thin film is justified as long as the width of the slab is much smaller than the
wavelengths of the relevant electromagnetic modes in the cavity. The corre-
sponding Lagrange equation reads,

ðr2 � o2
t Þ/ ¼ VðtÞdðx� Lx=2Þ/: ð13:73Þ

We divide the cavity into two regions: region I (0� x� Lx=2) and region II
(Lx=2� x� Lx). Perfect conductivity at the edges of the cavity imposes Dirichlet
b.c. for the field. The presence of the plasma sheet introduces a discontinuity in the
x-spatial derivative, while the field itself remains continuous,

/Iðx ¼ Lx=2; tÞ ¼/IIðx ¼ Lx=2; tÞ;
ox/Iðx ¼ Lx=2; tÞ � ox/IIðx ¼ Lx=2; tÞ ¼ � VðtÞ/ðx ¼ Lx=2; tÞ:

ð13:74Þ

We will consider a set of solutions that satisfies automatically all b.c..

wmðx; tÞ ¼
ffiffiffiffiffi
2
Lx

r
sin kmxðtÞxð Þ

ffiffiffiffiffi
2
Ly

s
sin

pmyy

Ly

� � ffiffiffiffiffi
2
Lz

s
sin

pmzz

Lz

� �
; ð13:75Þ

where my;mz are positive integers. The function wm depends on t through kmxðtÞ;
which is the mx-th positive solution to the following transcendental equation

2kmx tan�1 kmx Lx

2

� �
¼ �VðtÞ: ð13:76Þ

To simplify the notation, in what follows we will write km instead of kmx : Note that,
when VðtÞ ! 1; the solutions to this equation become the usual ones for perfect
reflectors, km ¼ mLx=2; with m a positive integer.

Let us define

Wmðx; tÞ ¼
wmðx; y; z; tÞ 0� x� Lx=2

�wmðx� Lx; y; z; tÞ Lx=2� x� Lx

�
ð13:77Þ

These functions satisfy the b.c. and the orthogonality relations

Wm;Wnð Þ ¼ 1� sinðkmðtÞLxÞ=kmðtÞLx½ �dm;n:
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There is a second set of modes with a node on the cavity midpoint. As these
solutions do not ‘‘see’’ the slab, they will be irrelevant in what follows.

For t� 0 the slab is not irradiated, consequently V is independent of time and
has the value V0: The modes of the quantum scalar field that satisfy the Klein–
Gordon Eq. (13.73) are

umðx; tÞ ¼
e�i�xmtffiffiffiffiffiffiffiffiffi

2�xm

p Wmðx; 0Þ; ð13:78Þ

where �x2
m ¼ ðk0

mÞ
2 þ pmy

Ly

� �2
þ pmz

Lz

� �2
and k0

m is the m-th solution to Eq. (13.76) for

V ¼ V0: At t ¼ 0 the potential starts to change in time and the set of numbers fkmg
acquires a time dependence through Eq. (13.76).

Using Eq. (13.78) we expand the field operator / as

/ðx; tÞ ¼
X

m

bmumðx; tÞ þ bymu�mðx; tÞ
� �

; ð13:79Þ

where bm are annihilation operators. Notice that in the above equation we omitted
the modes with a node at x ¼ Lx=2 because their dynamics is not affected by the
presence of the slab.

For t� 0 we write the expansion of the field mode us as

usðx; t [ 0Þ ¼
X

m

PðsÞm ðtÞWmðx; tÞ: ð13:80Þ

Assume a time dependent conductivity given by

VðtÞ ¼ V0 þ Vmax � V0ð Þf ðtÞ; ð13:81Þ

where f ðtÞ is a periodic and non-negative function, f ðtÞ ¼ f ðt þ TÞ� 0; that
vanishes at t ¼ 0 and attains its maximum at f ðseÞ ¼ 1: In each period, f ðtÞ
describes the excitation and relaxation of the plasma sheet produced by the laser
pulse. Typically, the characteristic time of excitation se is the smallest time scale
and satisfies se � T: Under certain constraints, large changes in V induce only
small variations in k through the transcendental relation between k and V (see Eq.
(13.76)). In this case, a perturbative treatment is valid and a linearization of such a
relation is appropriate. Accordingly we write

knðtÞ ¼ k0
nð1þ enf ðtÞÞ; ð13:82Þ

where

en ¼
Vmax � V0

Lxðk0
nÞ

2 þ V0 1þ V0Lx
4

 �: ð13:83Þ

The restriction for the validity of the perturbative treatment is V0Lx �
Vmax=V0 [ 1: These conditions are satisfied for realistic values of Lx; V0; and Vmax:
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Replacing Eq. (13.80) into ðr2 � o2
t Þus ¼ 0 we find a set of coupled differential

equations for the amplitudes PðsÞm ðtÞ: The dynamics is described by a set of coupled
harmonic oscillators with periodically varying frequencies and couplings, as
already discussed in this section. It is of the same form as the equations that
describe the modes of a scalar field in a three dimensional cavity with an oscil-
lating boundary. For the same reasons as before, a naive perturbative solution of
previous equations in powers of en breaks down after a short amount of time when
the external frequency is tuned with some of the eigenfrequencies of the cavity.
Assuming that f ðtÞ is a sum of harmonic functions of frequencies Xj ¼ j2p=T; the
resonance condition is Xj ¼ 2~xn for some j and n. If there is no intermode cou-
pling, a nonperturbative solution gives an exponential number of created photons
in that particular mode

hNnðtÞi ¼ hbynbni ¼
X

s

2�xnjAðsÞn ðtÞj
2  sinh2 ðk0

nÞ
2fj

Xj
ent

 !
; ð13:84Þ

where fj is the amplitude of the oscillations of f ðtÞ with frequency Xj:
A full electromagnetic calculation has been presented in Ref. [104]. It was shown

there that the scalar model presented here describes the TE electromagnetic modes
inside the cavity. The treatment of TM modes involves an independent scalar field,
with a potential proportional to d0ðx� Lx=2Þ: Moreover, the model has also been
generalized to the case of arbitrary positions of the plasma sheet within the cavity
[104]. The number of created TE photons depends strongly on the position of the
layer, and the maximum number is attained when it is located at the midpoint of the
cavity. On the other hand, for TM modes this dependence is rather weak.

In the treatment above no dissipation effects are considered (the delta-potential
is real). Similar calculations for lossless dielectric slabs with time-dependent and
real permittivities [103] also neglect dissipation. However, it has been pointed out
that dissipative effects may be relevant in the evaluation of created photons [102].
In general, one expects the electromagnetic energy to be dissipated in the cavity
walls, in the plasma sheet, and/or in dielectric slabs contained in the cavity. In
resonant situations without dissipation, we have seen that the dynamics of the
relevant electromagnetic mode is described by a harmonic oscillator with time
dependent frequency. A phenomenological way of taking into account dissipative
effects is to replace this equation with that of a damped oscillator [105] . Of course
this model cannot be consistently quantized unless one includes a noise term,
otherwise the usual commutation relations are violated. Using the quantum noise
operator approach [106] one can estimate the rate of photon creation in this model
and, provided the dissipation is not too large, the number of photons still grows
exponentially, although at a smaller rate. However, it has been recently argued
[43] that these results should be valid only in the short time limit, while in the long
time limit the system should reach a stationary state with a constant number of
photons inside the cavity. As the calculations in [43] involve 1D cavities, this point
deserves further investigation.
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13.5 Experimental Perspectives

Since the first theoretical predictions about motion induced radiation, it was clear
that the experimental observation of this effect was not an easy task. As mentioned
at the end of Sect. 13.2, the photon creation produced by a single accelerated
mirror is extremely small in realistic situations (see Eq. (13.20)).

The most promising situation seems to be the photon creation by parametric
amplification described in Sect. 13.4. However simple numerical estimations show
that, even in the most favorable cases, it is difficult to observe the DCE in the
laboratory. In all the 3D examples discussed in Sect. 13.4, the number of created
photons grows exponentially in time as

hNi ¼ sinh2 gxetð Þ; ð13:85Þ

where x is the frequency of the resonant mode and g is a number of order 1
related to the geometry of the cavity. Here e denotes the relative amplitude of
the oscillations in the moving mirror case, or the relative amplitude of the oscil-
lations of the relevant component of the wavevector in the case of time dependent
conductivity (see Eq. (13.82)). This equation is valid as long as e2xt� 1 and
neglects any dissipative effects. As the electromagnetic cavity has a finite Q-factor,
a rough estimation of the maximum number of created photons hNmaxi is obtained
by setting tmax ¼ Q=x in the above equation. As mentioned at the end of Sect. 13.4
, there is no agreement in the literature about this estimation. Calculations based
on the use of a master equation [44] give an exponential growth with a rate
diminished by a factor C ¼ 1� 1=ð2QeÞ (see also Ref. [107]). On the other hand,
it was shown that, in the case of 1D cavities, the total number of photons inside the
cavity should reach a constant value proportional to the finesse of the cavity at
long times [43]. It was argued in the same work that the exponential growth in the
presence of dissipation would be valid only at short times. In any case, it is clear
that a necessary condition to have an observable number of photons is that
2Qe [ 1:

Assuming a cavity of length L0 ’ 1 cm, the oscillation frequency of the mirror
should be in the GHz range in order to meet the parametric resonance condition. A
plausible possibility for reaching such high mechanical oscillation frequencies is to
consider surface vibrations, instead of a global motion of the mirror [35]. In this
context, the maximum attainable values of the relative amplitude would be around
e ’ 10�8; and therefore the quality factor of the cavity should be greater than 108

in order to have a non-negligible number of photons. Microwave superconducting
cavities with Q-factors as high as 1012 have been built [108]. However, the Q-
factor would be severely limited by the presence of an oscillating wall. Therefore,
it is an extraordinary challenge to produce extremely fast oscillations while
keeping the extremely high Q-factors needed in the DCE. Moreover, the oscilla-
tions should be tuned with high precision to parametric resonance with a cavity
mode.
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13.5.1 High Frequency Resonators and Photon Detection
via Superradiance

A concrete setup for producing and detecting motion induced photons has been
proposed in Ref. [46]. A Film Bulk Acoustic Resonator (FBAR) is a device that
consists of a piezoelectric film sandwiched between two electrodes. An aluminum
nitride FBAR of thickness corresponding to a half of the acoustic wavelength can
be made to vibrate up to a frequency of 3 GHz, with an amplitude of e ¼ 10�8:
The expected maximum power of motion-induced photons produced by such a
FBAR depends of course on the Q-factor of the cavity. It can be estimated to be

Pmax ¼ hNmaxi�hx=tmax: ð13:86Þ

Assuming that Qe ¼ Oð1Þ; this gives Pmax ’ 10�22W ; which is too small for direct
detection.

However, this low power could be detected using ultracold atoms. Let us con-
sider a cavity filled with an ensemble of population-inverted atoms in a hyperfine
state whose transition frequency is equal to the resonance frequency of the cavity.
Then the Casimir photons can trigger a stimulated emission of the atoms, and
therefore they can be indirectly detected by this form of superradiance. Reference
[46] contains a description of the experimental setup that could be used to observe
the DCE, and a discussion about the rejection of signals not produced by the
Casimir photons. In particular, stimulated amplification could also be triggered by
the spontaneous decay of one of the atoms (superfluorescence). In order to dis-
criminate between both effects it could be necessary to attain larger values of Qe:

13.5.2 Time Dependent Conductivity Induced
by Ultra-Short Laser Pulses

In order to avoid the experimental complications associated with the high frequency
motion of the mirror, it is possible to produce effective changes in the length of the
cavity by inducing abrupt changes in the reflectivity of a slab contained in the cavity,
as already mentioned in Sect. 13.4.3. This can be done by illuminating a semicon-
ducting slab with ultra short laser pulses [47–50]. An experiment based on this idea is
currently being carried out by the group of Padova [109].

In this case, a numerical estimation of the maximum number of photons created
in the cavity looks, at first sight, much more promising than in the case of moving
mirrors. Using a slab of a thickness around 1 mm, it is possible to reach values of e
as large as 10�4; and therefore the constraints on the Q-factor of the cavity are
considerably milder. Moreover, it is experimentally possible to generate trains of
thousands of laser pulses with a repetition frequency on the order of a GHz.
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In Padova’s setup (see Fig. 13.4), a high Q  106 superconducting cavity
contains a GaAs semiconducting slab. The laser pulses are tuned at 4:70 GHz,
twice the frequency of the fundamental TE mode of the cavity. However, it has
been pointed out [102] that dissipative effects may play an important role in this
kind of experiment. Indeed, the changes in the conductivity of the slab are due to
the creation of electron-hole pairs by the laser pulses, and during this process the
dielectric permittivity acquires an imaginary part. The associated dissipation
prevents photon creation unless severe constraints on the properties of the semi-
conductor are fulfilled: it must have a very short recombination time (tenths of ps),

and a high mobility (around 1m2ðVsÞ�1). A slab with these characteristics has been
constructed by irradiating a GaAs sample with fast neutrons, in order to reduce the
recombination time of the original sample (about 1 ns) while keeping constant the
value of the mobility [109]. Photons are detected using a loop antenna inside the
cavity. The minimum number of photons that can be detected is around 100, below
the expected signal of Casimir photons [54, 109].

A related setup is illumination of a superconductor instead of a semiconductor
surface. The advantage in this case is that dissipative effects are less important,
because the variation of the imaginary part of the permittivity is much smaller for
superconductors than for semiconductors in the microwave region [110]. More-
over, since the abrupt changes in the conductivity are due to local heating of the
surface (and not to the creation of electron-hole pairs as in the semiconductor), the
intensity of the laser can be considerably smaller, reducing unwanted effects of
energy accumulation inside the cavity.

13.5.3 Optical Parametric Oscillators

Standard nonlinear optics can be interpreted, in some cases, as a time-dependent
modulation of the refractive index. Reference [43] considered an optical

Fig. 13.4 Superconducting
cavity of the experimental
setup of MIR experiment at
Padova to measure the
dynamical Casimir effect
(Courtesy of Giuseppe
Ruoso)
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parametric oscillator (OPO) with a pump laser beam of frequency X and amplitude
Epump interacting with a very thin vð2Þ nonlinear crystal slab placed on the interior
side of the cavity mirror. For a type-I arrangement, the total polarization com-
ponent along a suitable crystal symmetry axis may be written in terms of the
intracavity electric field component along the same direction as [43]

PðtÞ ¼ e0 vð1Þ þ 1
2
vð2ÞEpump sinðXt � hÞ

� �
EðtÞ; ð13:87Þ

where e0 is the vacuum permittivity, vð1Þ and vð2Þ are the relevant components of
the linear and second-order nonlinear susceptibility tensors, and h is a phase that
depends on the pump beam phase and the position of the crystal.

The total susceptibility as given by Eq. (13.87) (including the nonlinear second-
order term) corresponds to an effective refractive index oscillating at the pump
beam frequency X; thus leading to a modulation of the optical cavity length. This
is formally equivalent to modulating the physical cavity length by bouncing the
mirror with frequency X: But in the OPO the pump beam frequency is in the
optical range, as are the generated photons with frequencies satisfying xþ x0 ¼
X: For x and x0 corresponding to cavity modes, parametric amplification is
enhanced and the resulting photon flux is typically several orders of magnitude
higher than in the case of mechanical motion [43].

13.5.4 Superconducting Coplanar Waveguides

Another possibility to induce fast variations of the b.c. on the electromagnetic field is
to consider a coplanar waveguide terminated by a SQUID [57, 58]. A time-depen-
dent magnetic flux can be applied to control the effective inductance of the SQUID,
which in turn produces a time-dependent Robin boundary condition for the phase
field (time integral of the electric field), equivalent to that of a transmission line with
a variable length. This setup simulates a moving Robin mirror in 1D with an effective
velocity that might be close to the speed of light. As a consequence, the first-order
non-relativistic results [26, 73], based on the perturbative approach outlined in Sect.
13.2, must be modified by the inclusion of higher-order frequency sidebands [57].

As in the previous examples, it is crucial to check if the flux of Casimir photons
can be discriminated from other sources of photons, like the classical thermal
contribution. The analysis presented in Ref. [57] shows that this is the case, for
realistic values of the parameters, at temperatures below 70 mK.

13.6 Final Remarks

We have reviewed some theoretical and experimental advances in the analysis of
moving bodies or time dependent boundary conditions coupled to the vacuum
fluctuations of the electromagnetic field.
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Accelerated neutral bodies produce the emission of real photons, while expe-
riencing a radiation reaction force. When the dynamics of the bodies is treated
quantum mechanically, the interaction with the vacuum fluctuations not only
causes this dissipative force, but also an appreciable amount of decoherence,
which is a consequence of the entanglement between the mirrors and the elec-
tromagnetic field. This is a particular example of quantum Brownian motion,
where the Brownian particle (mirror) loses coherence while being subjected to a
damping force due to its coupling to the environment (the quantum field).

When two neutral bodies are in relative motion, we expect velocity-dependent
forces between them. There is a particularly interesting situation in which two
parallel, non-perfectly conducting slabs are in relative parallel motion with con-
stant velocity. In this case, there is a vacuum friction between the slabs even in the
absence of real photons. The effect can be understood in terms of the interaction of
image charges, or as the interchange of virtual photons between the surfaces. There
are similar friction forces for neutral atoms moving near surfaces.

The rate of photon creation produced by a single accelerated body in free space
is deceptively small in realistic situations. However, in closed cavities a much
larger number of photons may be produced by parametric amplification. Indeed in
an ideal 3D cavity one expects an exponential growth in the number of photons
when its size varies periodically at an appropriate resonant frequency, making
detection of photon creation not an impossible task. The calculation of photon
creation in the presence of ideal conductors have been performed in 1D and 3D
using different analytical approximations. The results are consistent and have been
confirmed by fully numerical calculations. However, the case of moving mirrors
with finite conductivity (i.e electromagnetic cavities with a finite Q-factor) is not a
completely settled issue. In 1D cavities, at short times the growth of the total
number of created photons is still exponential (with a different rate), while at large
times the total number of photons should reach saturation. This problem has not
yet been solved for 3D cavities. The difficulties in evaluating the DCE for mirrors
with finite conductivity recalls a similar situation in the static Casimir effect, where
the evaluation of the Casimir force depends strongly on the theoretical model used
to describe the conductivity of the bodies, and there are interesting correlations
between finite conductivity, temperature and geometry. These correlations may
have relevant counterparts in the dynamical problem. In any case, although dif-
ficult, the direct experimental detection of the motion induced radiation is not out
of reach, as long as one can keep a very high Q-factor in a cavity with moving
walls. In particular, there is a specific proposal that involves nanoresonators in a
high Q-cavity filled with a gas of cold atoms to detect a small number of photons
through superradiance.

An exponentially large number of photons can also be produced when some
electromagnetic property of the cavity varies periodically with time. Of particular
importance is the case in which the conductivity of a semiconductor or super-
conductor slab placed inside an electromagnetic cavity is modulated using short
laser pulses. Theoretical estimates show that this setup could be implemented, with
milder requirements on the Q-factor of the cavity. Once again, there is no
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comprehensive theoretical model that takes into account the (dissipative) response
of the slab to the laser pulses, and its relevance for the photon creation process.
However, this is a promising alternative and there is an ongoing experiment at
Padova based on this setup.

There are other possibilities to produce fast variations of the boundary condi-
tions on the electromagnetic field, that involve optical parametric oscillators or
superconducting waveguides. The theoretical analyses suggest that it should be
easier to detect the photons created in these setups than in the case of moving
mirrors.

In summary, there is a plethora of interesting effects related to the electro-
magnetic vacuum fluctuations in the presence of moving bodies and/or other time
dependent external conditions. The eventual experimental confirmation of some of
these effects will certainly produce an increasing activity on this subject in the near
future, as was the case for the static Casimir effect following the first realization of
precise experiments in that area since 1997.
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